Beating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions

Abstract

In this study, a gradually increased hydro-mechanical treatments duration were applied to native hemp bast fibres with a traditional pulp and paper beating device (laboratory Valley beater). There is often a trade-off between the treatment applied to the fibres and the effect on their integrity. The multimodal analysis provided an understanding of the beating impact on the fibres at multiple scales and the experimental design made it possible to distinguish the effects of hydro- and hydro-mechanical treatment. Porosity analyses showed that beating treatment doubled the macroporosity and possibly reduced nanoporosity between the cellulose microfibrils. The beating irregularly extracted the amorphous components known to be preferentially located in the middle lamellae and the primary cell walls rather than in the secondary walls, the overall increasing the crystallinity of cellulose from 49.3 to 59.1%, but a non-significant change in the indentation moduli of the cell wall was observed. In addition, beating treatments with two distinct mechanical severities showed a disorganization of the cellulose conformation, which significant dropped the indention moduli by 11.2 GPa and 8.4 GPa for 10 and 20 min of Valley beater hydro-mechanical treatment, respectively, compared to hydro-treated hemp fibres (16.6 GPa). Pearson’s correlation coefficients between physicochemical features and the final indentation moduli were calculated. Strong positive correlations were highlighted between the cellulose crystallinity and rhamnose, galactose and mannose as non-cellulosic polysaccharide components of the cell wall.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

DVS:

Dynamic vapour sorption

HPAEC-PAD:

High-performance anion-exchange chromatography with pulsed amperometric detection

HPLC:

High-performance liquid chromatography

MFA:

Microfibrillar angle

MIP:

Mercury intrusion porosimetry

NCP’s:

Non cellulosic polysaccharides

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

References

  1. Adusumalli RB, Passas R, Sreedhar I, Krishnamurthy B, Kombaiah B, Montagne A (2014) Nanoindentation of bleached and refined pulp fibres. IJMatEI 5:138–150. https://doi.org/10.1504/ijmatei.2014.060320

    Article  Google Scholar 

  2. Akmar PF, Yusoff MNM, Kennedy JF, Knill CJ (2000) Compositional analysis of oil palm trunk fibers. In: Cellulosic pulps, fibres and materials. Woodhead Publishing, pp 227–234

  3. Andersons J, Spārniņš E, Poriķe E (2009) Strength and damage of elementary flax fibers extracted from tow and long line flax. J Compos Mater 43:2653–2664. https://doi.org/10.1177/0021998309345035

    Article  Google Scholar 

  4. Arnould O, Siniscalco D, Bourmaud A, Le Duigou A, Baley C (2017) Better insight into the nano-mechanical properties of flax fibre cell walls. Ind Crop Prod 97:224–228. https://doi.org/10.1016/j.indcrop.2016.12.020

    Article  CAS  Google Scholar 

  5. Ausias G, Bourmaud A, Coroller G, Baley C (2013) Study of the fibre morphology stability in polypropylene-flax composites. Polym degrad Stabil 98:1216–1224. https://doi.org/10.1016/j.polymdegradstab.2013.03.006

    Article  CAS  Google Scholar 

  6. Beaugrand J, Berzin F (2012) Lignocellulosic fiber reinforced composites: influence of compounding conditions on defibrization and mechanical properties. J Appl Polym Sci 128:1227–1238. https://doi.org/10.1002/app.38468

    Article  CAS  Google Scholar 

  7. Beaugrand J, Guessasma S (2015) Scenarios of crack propagation in bast fibers: combining experimental and finite element approaches. Compos Struct 133:667–678. https://doi.org/10.1016/j.compstruct.2015.07.119

    Article  Google Scholar 

  8. Beaugrand J, Guessasma S, Maigret J-E (2017) Damage mechanisms in defected natural fibers. Sci Rep UK 7:14041. https://doi.org/10.1038/s41598-017-14514-6

    Article  CAS  Google Scholar 

  9. Berzin F, Vergnes B, Beaugrand J (2014) Evolution of lignocellulosic fibre lengths along the screw profile during twin screw compounding with polycaprolactone. Compos Part A Appl S 59:30–36. https://doi.org/10.1016/j.compositesa.2013.12.008

    Article  CAS  Google Scholar 

  10. Bourmaud A, Baley C (2009) Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polym Degrad Stabil 94:297–305. https://doi.org/10.1016/j.polymdegradstab.2008.12.010

    Article  CAS  Google Scholar 

  11. Bourmaud A, Malvestio J, Lenoir N, Siniscalco D, Habrant A, King A, Legland D, Baley C, Beaugrand J (2017) Exploring the mechanical performance and in-planta architecture of secondary hemp fibres. Ind Crop Prod 108:1–5. https://doi.org/10.1016/j.indcrop.2017.06.010

    Article  Google Scholar 

  12. Bourmaud A, Beaugrand J, Shah DU, Placet V, Baley C (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408. https://doi.org/10.1016/j.pmatsci.2018.05.005

    Article  Google Scholar 

  13. Burgert I, Keplinger T (2013) Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. J Exp Bot 64:4635–4649. https://doi.org/10.1093/jxb/ert255

    Article  CAS  PubMed  Google Scholar 

  14. Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. https://doi.org/10.1016/j.biombioe.2010.08.067

    Article  CAS  Google Scholar 

  15. Célino A, Fréour S, Jacquemin F, Casari P (2013) The hygroscopic behavior of plant fibers: a review. Front Chem 1:43. https://doi.org/10.3389/fchem.2013.00043

    CAS  Article  PubMed  Google Scholar 

  16. Célino A, Gonçalves O, Jacquemin F, Fréour S (2014) Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydr Polym 101:163–170. https://doi.org/10.1016/j.carbpol.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  17. Chen M, Coasne B, Guyer R, Derome D, Carmeliet J (2018) Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nat Commun 9:3507. https://doi.org/10.1038/s41467-018-05897-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng Q, Wang J, McNeel J, Jacobson P (2010) Water retention value measurements of cellulosic materials using a centrifuge technique. Bioresources 5(3):1945–1954

    CAS  Google Scholar 

  19. Chernova TE, Mikshina PV, Salnikov VV, Ibragimova NN, Sautkina OV, Gorshkova TA (2018) Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp (Cannabis sativa L.). Ind Crop Prod 117:97–109. https://doi.org/10.1016/j.indcrop.2018.02.082

    Article  CAS  Google Scholar 

  20. Crônier D, Monties B, Chabbert B (2005) Structure and chemical composition of bast fibers isolated from developing hemp stem. J Agric Food Chem 53:8279–8289. https://doi.org/10.1021/jf051253k

    Article  CAS  PubMed  Google Scholar 

  21. Dai D, Fan M (2010) Characteristic and performance of elementary hemp fibre. Mater Sci Appl 1(6):4. https://doi.org/10.4236/msa.2010.16049

    CAS  Article  Google Scholar 

  22. Dai D, Fan M (2011) Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vib Spectrosc 55:300–306. https://doi.org/10.1016/j.vibspec.2010.12.009

    Article  CAS  Google Scholar 

  23. Del Masto A, Trivaudey F, Guicheret-Retel V, Placet V, Boubakar L (2017) Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. J Mater Sci 52:6591–6610. https://doi.org/10.1007/s10853-017-0896-x

    Article  CAS  Google Scholar 

  24. Dienes D, Kemény S, Egyházi A, Réczey K (2005) Improving the capability of the Schopper–Riegler freeness measurement. Measurement 38:194–203. https://doi.org/10.1016/j.measurement.2005.07.011

    Article  Google Scholar 

  25. Dumas JBA (1831) Procédés de l’analyse organique. Annales de Chimie et de Physique 247:198–213

    Google Scholar 

  26. Ferreira PJ, Matos S, Figueiredo MM (1999) Size characterization of fibres and fines in hardwood kraft pulps. Part Part Syst Charact 16:20–24. https://doi.org/10.1002/(sici)1521-4117(199905)16:1%3c20:aid-ppsc20%3e3.0.co;2-m

    Article  CAS  Google Scholar 

  27. Gallos A, Paes G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv 7:34638–34654. https://doi.org/10.1039/c7ra05240e

    Article  CAS  Google Scholar 

  28. Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803. https://doi.org/10.1016/j.carbpol.2014.08.047

    Article  CAS  PubMed  Google Scholar 

  29. Giummarella N, Henriksson G, Salmén L, Laoko M (2017) On the effect of hemicellulose removal cellulose–lignin interactions. Nord Pulp Pap Res J 32:542–549. https://doi.org/10.3183/NPPRJ-2017-32-04-p542-549

    Article  CAS  Google Scholar 

  30. González López CV, García MDCC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591. https://doi.org/10.1016/j.biortech.2010.04.077

    Article  CAS  Google Scholar 

  31. Gourier C, Bourmaud A, Le Duigou A, Baley C (2017) Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polym Degrad Stabil 136:1–9. https://doi.org/10.1016/j.polymdegradstab.2016.12.003

    Article  CAS  Google Scholar 

  32. Guerriero G, Mangeot-Peter L, Legay S, Behr M, Lutts S, Siddiqui KS, Hausman J-F (2017) Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues. BMC Genom 18:741. https://doi.org/10.1186/s12864-017-3970-5

    Article  CAS  Google Scholar 

  33. Guessasma S, Beaugrand J (2019) Damage kinetics at the sub-micrometric scale in bast fibers using finite element simulation and high-resolution X-ray micro-tomography. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00194

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guicheret-Retel V, Cisse O, Placet V, Beaugrand J, Pernes M, Boubakar ML (2015) Creep behaviour of single hemp fibres. Part II: influence of loading level, moisture content and moisture variation. J Mater Sci 50:2061–2072. https://doi.org/10.1007/s10853-014-8768-0

    Article  CAS  Google Scholar 

  35. Herbaut M, Zoghlami A, Habrant A, Falourd X, Foucat L, Chabbert B, Paës G (2018) Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol Biofuels 11:52. https://doi.org/10.1186/s13068-018-1053-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hill Callum AS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. https://doi.org/10.1002/app.29725

    Article  CAS  Google Scholar 

  37. Hughes M (2012) Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci 47:599–609. https://doi.org/10.1007/s10853-011-6025-3

    Article  CAS  Google Scholar 

  38. Jäger A, Hofstetter K, Buksnowitz C, Gindl-Altmutter W, Konnerth J (2011) Identification of stiffness tensor components of wood cell walls by means of nanoindentation. Compos Part A Appl Sci Manuf 42:2101–2109. https://doi.org/10.1016/j.compositesa.2011.09.020

    Article  Google Scholar 

  39. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:359–376. https://doi.org/10.1007/s11029-014-9422-2

    Article  CAS  Google Scholar 

  40. Le Gall M, Davies P, Martin N, Baley C (2018) Recommended flax fibre density values for composite property predictions. Ind Crop Prod 114:52–58. https://doi.org/10.1016/j.indcrop.2018.01.065

    Article  Google Scholar 

  41. Le Moigne N, Otazaghine B, Stéphane C, Angellier-Coussy H, Anne B (2018) Surfaces and interfaces in natural fibre reinforced composites. Springer, New York

    Google Scholar 

  42. Lee KY, Bismarck A (2014) 3-Creating hierarchical structures in cellulosic fibre reinforced polymer composites for advanced performance. In: Hodzic A, Shanks R (eds) Natural fibre composites. Woodhead Publishing, Cambridge, pp 84–102

    Google Scholar 

  43. Lefeuvre A, Bourmaud A, Morvan C, Baley C (2014) Elementary flax fibre tensile properties: correlation between stress–strain behaviour and fibre composition. Ind Crop Prod 52:762–769. https://doi.org/10.1016/j.indcrop.2013.11.043

    Article  CAS  Google Scholar 

  44. Lefeuvre A, Duigou AL, Bourmaud A, Kervoelen A, Morvan C, Baley C (2015) Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour. Ind Crop Prod 76:1039–1048. https://doi.org/10.1016/j.indcrop.2015.07.062

    Article  CAS  Google Scholar 

  45. Legland D, Beaugrand J (2013) Automated clustering of lignocellulosic fibres based on morphometric features and using clustering of variables. Ind Crop Prod 45:253–261. https://doi.org/10.1016/j.indcrop.2012.12.021

    Article  CAS  Google Scholar 

  46. Legland D, Arganda Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534. https://doi.org/10.1093/bioinformatics/btw413

    CAS  Article  PubMed  Google Scholar 

  47. Liu M, Thygesen A, Summerscales J, Meyer AS (2017) Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind Crop Prod 108:660–683. https://doi.org/10.1016/j.indcrop.2017.07.027

    Article  CAS  Google Scholar 

  48. Marrot L, Lefeuvre A, Pontoire B, Bourmaud A, Baley C (2013) Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Ind Crop Prod 51:317–327. https://doi.org/10.1016/j.indcrop.2013.09.026

    Article  CAS  Google Scholar 

  49. Mazian B, Bergeret A, Benezet J-C, Malhautier L (2018) Influence of field retting duration on the biochemical, microstructural, thermal and mechanical properties of hemp fibres harvested at the beginning of flowering. Ind Crop Prod 116:170–181. https://doi.org/10.1016/j.indcrop.2018.02.062

    Article  CAS  Google Scholar 

  50. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158. https://doi.org/10.1016/j.copbio.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  51. Mohanty AK, Vivekanandhan S, Pin J-M, Misra M (2018) Composites from renewable and sustainable resources: challenges and innovations. Science 362:536

    Article  CAS  PubMed  Google Scholar 

  52. Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Biochem 41:935–944. https://doi.org/10.1016/j.plaphy.2003.07.001

    Article  CAS  Google Scholar 

  53. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/jmr.1992.1564

    Article  CAS  Google Scholar 

  54. Page DH (1989) The beating of chemical pulps—the action and the effects. In: Baker CF, Punton V (eds) Fundamentals of papermaking. 9th Fundamental research symposium notes, vol 1. Wiley, Cambridge, pp 1–38

  55. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  56. Placet V, Méteau J, Froehly L, Salut R, Boubakar ML (2014) Investigation of the internal structure of hemp fibres using optical coherence tomography and focused ion beam transverse cutting. J Mater Sci 49:8317–8327. https://doi.org/10.1007/s10853-014-8540-5

    Article  CAS  Google Scholar 

  57. Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777. https://doi.org/10.1007/s10853-017-0811-5

    Article  CAS  Google Scholar 

  58. Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. Bioresources 7(4):6077–6108

    Article  Google Scholar 

  59. Rask M, Madsen B, Sørensen BF, Fife JL, Martyniuk K, Lauridsen EM (2012) In situ observations of microscale damage evolution in unidirectional natural fibre composites. Compos Part A Appl Sci Manuf 43:1639–1649. https://doi.org/10.1016/j.compositesa.2012.02.007

    Article  CAS  Google Scholar 

  60. Roux J-C, Bloch J-F, Bordin R, Nortier P (2009) The net normal force per crossing point: a unified concept for the low consistency refining of pulp suspensions. In: 14th Fundamental research symposium: advances in pulp and paper research, FRC, Oxford, pp 51–83

  61. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  62. Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48:6083–6107. https://doi.org/10.1007/s10853-013-7458-7

    Article  CAS  Google Scholar 

  63. Shah DU, Nag RK, Clifford MJ (2016) Why do we observe significant differences between measured and ‘back-calculated’ properties of natural fibres? Cellulose 23:1481–1490. https://doi.org/10.1007/s10570-016-0926-x

    Article  Google Scholar 

  64. Sharma B, Shah DU, Beaugrand J, Janeček E-R, Scherman OA, Ramage MH (2018) Chemical composition of processed bamboo for structural applications. Cellulose. https://doi.org/10.1007/s10570-018-1789-0

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrol 105:143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  CAS  Google Scholar 

  66. Tanguy M, Bourmaud A, Beaugrand J, Gaudry T, Baley C (2018) Polypropylene reinforcement with flax or jute fibre; influence of microstructure and constituents properties on the performance of composite. Compos Part B Eng 139:64–74. https://doi.org/10.1016/j.compositesb.2017.11.061

    Article  CAS  Google Scholar 

  67. Thygesen A, Daniel G, Lilholt H, Thomsen AB (2006a) Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J Nat Fibers 2:19–37. https://doi.org/10.1300/J395v02n04_02

    Article  CAS  Google Scholar 

  68. Thygesen LG, Bilde-Sørensen JB, Hoffmeyer P (2006b) Visualisation of dislocations in hemp fibres: a comparison between scanning electron microscopy (SEM) and polarized light microscopy (PLM). Ind Crop Prod 24:181–185. https://doi.org/10.1016/j.indcrop.2006.03.009

    Article  CAS  Google Scholar 

  69. Turner S, Kumar M (2018) Cellulose synthase complex organization and cellulose microfibril structure. Philos Trans A Math Phys Eng Sci 376:2112. https://doi.org/10.1098/rsta.2017.0048

    CAS  Article  Google Scholar 

  70. Tze WTY, Wang S, Rials TG, Pharr GM, Kelley SS (2007) Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Compos Part A Appl Sci Manuf 38:945–953. https://doi.org/10.1016/j.compositesa.2006.06.018

    Article  Google Scholar 

  71. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: Can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  72. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89. https://doi.org/10.1007/s10443-006-9032-9

    Article  CAS  Google Scholar 

  73. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283. https://doi.org/10.1103/PhysRev.17.273

    Article  Google Scholar 

  74. Westenbroek APH (2000) Extrusion pulping of natural fibers, determination, implementation and verification of constitutive equations required for modelling. Ph.D. Thesis. Wageningen University and Research Centre, Wageningen, 150 p

  75. Xu F, Shi Y-C, Wang D (2013) X-ray scattering studies of lignocellulosic biomass: a review. Carbohydr Polym 94:904–917. https://doi.org/10.1016/j.carbpol.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  76. Yao K, Wu Q, An R, Meng W, Ding M, Li B, Yuan Y (2018) Hydrothermal pretreatment for deconstruction of plant cell wall: part II. Effect on cellulose structure and bioconversion. Aiche J 0. https://doi.org/10.1002/aic.16106

    Article  Google Scholar 

  77. Zhong LX, Fu SY, Zhou XS, Zhan HY (2011) Effect of surface microfibrillation of sisal fibre on the mechanical properties of sisal/aramid fibre hybrid composites. Compos Part A Appl Sci Manuf 42:244–252. https://doi.org/10.1016/j.compositesa.2010.11.010

    Article  CAS  Google Scholar 

Download references

Acknowledgment

As this project is part of the SINFONI program, the authors would like to thank BPI France for their financial support. The authors would like to thank Bernard Kurek, Anouck Habrant, Olivier Delfosse and François Gaudard from FARE laboratory, for their complementary support. Thanks also to Julien Hubert from Gegenaa for performing the porosimetry experiments. Finally, the authors are grateful to Gilles Bajul from Celodev (Aÿ, France) for his help and scientific discussions on the beating process.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johnny Beaugrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padovani, J., Legland, D., Pernes, M. et al. Beating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions. Cellulose 26, 5665–5683 (2019). https://doi.org/10.1007/s10570-019-02456-3

Download citation

Keywords

  • Pile Valley beater
  • Plant cell wall
  • Nanoindentation
  • Porosity
  • Biochemistry
  • Natural fibre processing