Performance comparison of chitosan–clinoptilolite nanocomposites as adsorbents for vanadium in aqueous media

Abstract

This study aims to find a simple method for the synthesis of nanochitosan (NCT) via ionic gelation using sodium tripolyphosphate. In order to improve the adsorption properties of NCT, clinoptilolite was incorporated into its polymeric matrix and a new nano-biocomposite (NCT/Z) was obtained. The NCT/Z was modified by acid (HCl), diethylenetriamine (DETA) and thiodiethanethiol (TDET). The structural order and textural properties of the synthesized adsorbents have been studied by various methods. Batch adsorption experiments were performed to evaluate the ability of the prepared samples to removal of vanadium ions from aqueous media. The influence of factors such as the temperature and pH value of the metal ion solution, the initial concentration of vanadium ion, contact time and co-existing ions was investigated to increase our understanding about vanadium adsorption properties of synthesized materials. The Freundlich, Langmuir and Dubinin–Radushkevich equations were used to fit experimental data of the equilibrium isotherm and the isotherm constants were also determined. The adsorption rates were determined quantitatively and compared by pseudo-first and -second order kinetic models and intra-particle diffusion model. Thermodynamic studies indicated that the adsorption process of vanadium was exothermic and spontaneous. Desorption experiments were performed under alkaline and acidic conditions to investigate the reversibility of the adsorption process. The vanadium ions could be desorbed effectively by 0.5 M NaOH and the maximum adsorption capacity was not affected up to the Third cycle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Abanades JC, Rubin ES, Anthony EJ (2004) Sorbent cost and performance in CO2 capture systems. Ind Eng Chem Res 43(13):3462–3466

    CAS  Article  Google Scholar 

  2. Abou-Zeid RE, Dacrory S, Ali KA, Kamel S (2018) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol 119:207–214. https://doi.org/10.1016/j.ijbiomac.2018.07.127

    CAS  Article  PubMed  Google Scholar 

  3. Anirudhan T, Radhakrishnan P (2010) Adsorptive performance of an amine-functionalized poly (hydroxyethylmethacrylate)-grafted tamarind fruit shell for vanadium (V) removal from aqueous solutions. Chem Eng J 165(1):142–150

    CAS  Article  Google Scholar 

  4. Anirudhan T, Jalajamony S, Divya L (2009) Efficiency of amine-modified poly (glycidyl methacrylate)-grafted cellulose in the removal and recovery of vanadium (V) from aqueous solutions. Ind Eng Chem Res 48(4):2118–2124

    CAS  Article  Google Scholar 

  5. Aureli F, Ciardullo S, Pagano M, Raggi A, Cubadda F (2008) Speciation of vanadium (IV) and (V) in mineral water by anion exchange liquid chromatography-inductively coupled plasma mass spectrometry after EDTA complexation. J Anal At Spectrom 23(7):1009–1016

    CAS  Article  Google Scholar 

  6. Bagheri M, Younesi H, Hajati S, Borghei SM (2015) Application of chitosan–citric acid nanoparticles for removal of chromium (VI). Int J Biol Macromol 80:431–444

    CAS  PubMed  Article  Google Scholar 

  7. Barbosa GP, Debone HS, Severino P, Souto EB, da Silva CF (2016) Design and characterization of chitosan/zeolite composite films—effect of zeolite type and zeolite dose on the film properties. Mater Sci Eng C 60:246–254

    CAS  Article  Google Scholar 

  8. Budnyak T, Tertykh V, Yanovska E, Kołodyńska D, Bartyzel A (2015) Adsorption of V (V), Mo (VI) and Cr(VI) oxoanions by chitosan–silica composite synthesized by Mannich reaction. Adsorpt Sci Technol 33(6–8):645–657

    CAS  Article  Google Scholar 

  9. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902

    CAS  PubMed  Article  Google Scholar 

  10. Dehghani MH, Dehghan A, Najafpoor A (2017) Removing reactive red 120 and 196 using chitosan/zeolite composite from aqueous solutions: kinetics, isotherms, and process optimization. J Ind Eng Chem 51:185–195

    CAS  Article  Google Scholar 

  11. Depci T, Kul AR, Önal Y (2012) Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single-and multi-solute systems. Chem Eng J 200:224–236

    Article  CAS  Google Scholar 

  12. Dinu MV, Dragan ES (2010) Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms. Chem Eng J 160(1):157–163

    CAS  Article  Google Scholar 

  13. Doğan V, Aydın S (2014) Vanadium (V) removal by adsorption onto activated carbon derived from starch industry waste sludge. Sep Sci Technol 49(9):1407–1415

    Article  CAS  Google Scholar 

  14. Dubinin M (1947) The equation of the characteristic curve of activated charcoal. Dokl Akad Nauk SSSR 55:327–329

    CAS  Google Scholar 

  15. Erdem Yayayürük A, Yayayürük O (2017) Adsorptive performance of nanosized zero-valent iron for V (V) removal from aqueous solutions. J Chem Technol Biotechnol 92(8):1891–1898

    Article  CAS  Google Scholar 

  16. Fernandez A, Wendt JO, Wolski N, Hein KR, Wang S, Witten ML (2003) Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel. Chemosphere 51(10):1129–1137

    CAS  PubMed  Article  Google Scholar 

  17. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57(1):385–470

    CAS  Google Scholar 

  18. Goscianska J, Olejnik A (2018) Dispersion stability of the aminosilane-grafted mesoporous carbons in different solvents. Microporous Mesoporous Mater 265:149–161. https://doi.org/10.1016/j.micromeso.2018.02.009

    CAS  Article  Google Scholar 

  19. Guo L, Liu G, Hong R-Y, Li H-Z (2010) Preparation and characterization of chitosan poly (acrylic acid) magnetic microspheres. Mar Drugs 8(7):2212–2222

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Haseena PV, Padmavathy KS, Krishnan PR, Madhu G (2016) Adsorption of ammonium nitrogen from aqueous systems using chitosan–bentonite film composite. Proc Technol 24:733–740. https://doi.org/10.1016/j.protcy.2016.05.203

    Article  Google Scholar 

  21. Hem JD (1977) Reactions of metal ions at surfaces of hydrous iron oxide. Geochim Cosmochim Acta 41(4):527–538

    CAS  Article  Google Scholar 

  22. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Article  Google Scholar 

  23. Ho Y, Ng J, McKay G (2000) Kinetics of pollutant sorption by biosorbents. Sep Purif Methods 29(2):189–232

    CAS  Article  Google Scholar 

  24. Huang K-S, Sheu Y-R, Chao I-C (2009) Preparation and properties of nanochitosan. Polym Plast Technol Eng 48(12):1239–1243

    CAS  Article  Google Scholar 

  25. Huang Q, Liu M, Deng F, Wang K, Huang H, Xu D, Zeng G, Zhang X, Wei Y (2016) Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions. Mater Chem Phys 181:116–125. https://doi.org/10.1016/j.matchemphys.2016.06.041

    CAS  Article  Google Scholar 

  26. Jansson-Charrier M, Guibal E, Roussy J, Delanghe B, Le Cloirec P (1996) Vanadium (IV) sorption by chitosan: kinetics and equilibrium. Water Res 30(2):465–475

    CAS  Article  Google Scholar 

  27. Kajjumba GW, Aydın S, Güneysu S (2018) Adsorption isotherms and kinetics of vanadium by shale and coal waste. Adsorpt Sci Technol 36(3–4):936–952

    CAS  Article  Google Scholar 

  28. Kara A, Demirbel E (2012) Kinetic, isotherm and thermodynamic analysis on adsorption of Cr(VI) ions from aqueous solutions by synthesis and characterization of magnetic-poly (divinylbenzene-vinylimidazole) microbeads. Water Air Soil Pollut 223(5):2387–2403

    CAS  PubMed  Article  Google Scholar 

  29. Liu S, Lim M, Amal R (2014) TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration. Chem Eng Sci 105:46–52

    CAS  Article  Google Scholar 

  30. Korkuna O, Leboda R, Skubiszewska-Zie BJ, Vrublevs’ka T, Gun’ko V, Ryczkowski J (2006) Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater 87(3):243–254

    CAS  Article  Google Scholar 

  31. Kumar S, Malik MM, Purohit R (2018) Synthesis of high surface area mesoporous silica materials using soft templating approach. Mater Today Proce 5(2, Part 1):4128–4133. https://doi.org/10.1016/j.matpr.2017.11.673

    CAS  Article  Google Scholar 

  32. Kunjachan S, Jose S (2010) Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J Pharm 4(2):148–153

    CAS  Article  Google Scholar 

  33. Kwok KC, Koong LF, Chen G, McKay G (2014) Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 416:1–10

    CAS  PubMed  Article  Google Scholar 

  34. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    CAS  Article  Google Scholar 

  35. Luo H, Law WW, Wu Y, Zhu W, Yang E-H (2018) Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals. Microporous Mesoporous Mater 272:8–15. https://doi.org/10.1016/j.micromeso.2018.06.015

    CAS  Article  Google Scholar 

  36. Mthombeni NH, Mbakop S, Ochieng A, Onyango MS (2016) Vanadium (V) adsorption isotherms and kinetics using polypyrrole coated magnetized natural zeolite. J Taiwan Inst Chem Eng 66:172–180

    CAS  Article  Google Scholar 

  37. Naeem A, Westerhoff P, Mustafa S (2007) Vanadium removal by metal (hydr) oxide adsorbents. Water Res 41(7):1596–1602

    CAS  PubMed  Article  Google Scholar 

  38. Nakajima A (2002) Electron spin resonance study on the vanadium adsorption by persimmon tannin gel. Talanta 57(3):537–544

    CAS  PubMed  Article  Google Scholar 

  39. Namasivayam C, Sangeetha D (2006) Removal and recovery of vanadium (V) by adsorption onto ZnCl2 activated carbon: kinetics and isotherms. Adsorption 12(2):103–117

    CAS  Article  Google Scholar 

  40. Ngah WW, Fatinathan S (2008) Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem Eng J 143(1–3):62–72

    CAS  Article  Google Scholar 

  41. Padilla-Rodríguez A, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL, Perales-Pérez O, Román-Velázquez FR (2015) Synthesis of protonated chitosan flakes for the removal of vanadium (III, IV and V) oxyanions from aqueous solutions. Microchem J 118:1–11

    Article  CAS  Google Scholar 

  42. Parijaee M, Noaparast M, Saberyan K, Shafaie-Tonkaboni SZ (2014) Adsorption of vanadium (V) from acidic solutions by using octylamine functionalized magnetite nanoparticles as a novel adsorbent. Korean J Chem Eng 31(12):2237–2244

    CAS  Article  Google Scholar 

  43. Qiu M, Qian C, Xu J, Wu J, Wang G (2009) Studies on the adsorption of dyes into clinoptilolite. Desalination 243(1):286–292. https://doi.org/10.1016/j.desal.2008.04.029

    CAS  Article  Google Scholar 

  44. Rathinam K, Singh SP, Arnusch CJ, Kasher R (2018) An environmentally-friendly chitosan–lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydr Polym 199:506–515. https://doi.org/10.1016/j.carbpol.2018.07.055

    CAS  Article  PubMed  Google Scholar 

  45. Sağ Y, Kutsal T (1996) Fully competitive biosorption of chromium (VI) and iron (III) ions from binary metal mixtures by R-Arrhizus-use of the competitive Langmuir model. Process Biochem 31(6):573–585

    Article  Google Scholar 

  46. Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H (2018) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 84:414–423. https://doi.org/10.1016/j.foodhyd.2018.05.037

    CAS  Article  Google Scholar 

  47. Salgado-Gómez N, Macedo-Miranda M, Olguín M (2014) Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff. Appl Clay Sci 95:197–204

    Article  CAS  Google Scholar 

  48. Schuerer N, Stein E, Inic-Kanada A, Ghasemian E, Stojanovic M, Montanaro J, Bintner N, Hohenadl C, Sachsenhofer R, Barisani-Asenbauer T (2018) Effects of chitosan and chitosan N-acetylcysteine solutions on conjunctival epithelial cells. J EuCornea 1(1):12–18. https://doi.org/10.1016/j.xjec.2018.04.002

    Article  Google Scholar 

  49. Shariatinia Z, Bagherpour A (2018) Synthesis of zeolite NaY and its nanocomposites with chitosan as adsorbents for lead(II) removal from aqueous solution. Powder Technol 338:744–763. https://doi.org/10.1016/j.powtec.2018.07.082

    CAS  Article  Google Scholar 

  50. Sharififard H, Soleimani M (2015) Performance comparison of activated carbon and ferric oxide-hydroxide–activated carbon nanocomposite as vanadium (V) ion adsorbents. RSC Adv 5(98):80650–80660

    CAS  Article  Google Scholar 

  51. Sharififard H, Pepe F, Aprea P, de Gennaro B (2017) Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: batch and column study. Res Chem Intermed 43(11):6553–6570

    CAS  Article  Google Scholar 

  52. Simsir H, Eltugral N, Karagoz S (2017) Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresour Technol 246:82–87

    CAS  PubMed  Article  Google Scholar 

  53. Sirviö JA, Hasa T, Leiviskä T, Liimatainen H, Hormi O (2016) Bisphosphonate nanocellulose in the removal of vanadium (V) from water. Cellulose 23(1):689–697

    Article  CAS  Google Scholar 

  54. Sivakumar P, Palanisamy P (2009) Adsorption studies of basic Red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L. Int J Chem Tech Res 1(3):502–510

    CAS  Google Scholar 

  55. Ünaldı T, Orhun Ö, Kadir S (2009) Physicochemical characterization of natural and Na+, K+, Ca2+ and Mg2+-modified clinoptilolite from Gördes (Manisa, Turkey). Adsorpt Sci Technol 27(6):615–631

    Article  Google Scholar 

  56. Wan Ngah WS, Teong LC, Toh RH, Hanafiah MAKM (2012) Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: adsorption, desorption and fixed bed column studies. Chem Eng J 209:46–53. https://doi.org/10.1016/j.cej.2012.07.116

    CAS  Article  Google Scholar 

  57. Wan S, Wu J, He F, Zhou S, Wang R, Gao B, Chen J (2017) Phosphate removal by lead-exhausted bioadsorbents simultaneously achieving lead stabilization. Chemosphere 168:748–755. https://doi.org/10.1016/j.chemosphere.2016.10.142

    CAS  Article  PubMed  Google Scholar 

  58. Wang S, Shen L, Tong Y, Chen L, Phang I, Lim P, Liu T (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90(1):123–131

    CAS  Article  Google Scholar 

  59. Wang T, Cheng Z, Wang B, Ma W (2012) The influence of vanadate in calcined Mg/Al hydrotalcite synthesis on adsorption of vanadium (V) from aqueous solution. Chem Eng J 181–182:182–188. https://doi.org/10.1016/j.cej.2011.11.053

    CAS  Article  Google Scholar 

  60. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Google Scholar 

  61. Wright MT, Stollenwerk KG, Belitz K (2014) Assessing the solubility controls on vanadium in groundwater, northeastern San Joaquin Valley, CA. Appl Geochem 48:41–52

    CAS  Article  Google Scholar 

  62. Xia Z, Baird L, Zimmerman N, Yeager M (2017) Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers. Appl Surf Sci 416:565–573. https://doi.org/10.1016/j.apsusc.2017.04.095

    CAS  Article  Google Scholar 

  63. Xiao X-Y, Miao Y, Guo Z-H, Jiang Z-C, Liu Y-N, Xia C (2015) Soil vanadium pollution and microbial response characteristics from stone coal smelting district. Trans Nonferrous Met Soc China 25(4):1271–1278

    CAS  Article  Google Scholar 

  64. Yan B, Zeng C, Yu L, Wang C, Zhang L (2018) Preparation of hollow zeolite NaA/chitosan composite microspheres via in situ hydrolysis-gelation-hydrothermal synthesis of TEOS. Microporous Mesoporous Mater 257:262–271

    CAS  Article  Google Scholar 

  65. Yu Y, Wei Q, Li J, Yang J (2017) Removal of vanadium from wastewater by multi-walled carbon nanotubes. Fuller Nanotub Carbon Nanostruct 25(3):170–178

    CAS  Article  Google Scholar 

  66. Yu Y, Liu M, Yang J (2018) Characteristics of vanadium adsorption on and desorption from humic acid. Chem Ecol 34(6):548–564

    CAS  Article  Google Scholar 

  67. Zhang L, Liu X, Xia W, Zhang W (2014) Preparation and characterization of chitosan–zirconium (IV) composite for adsorption of vanadium (V). Int J Biol Macromol 64:155–161

    CAS  PubMed  Article  Google Scholar 

  68. Zhang X, Wu T, Zhang Y, Ng DH, Zhao H, Wang G (2015a) Adsorption of Hg2+ by thiol functionalized hollow mesoporous silica microspheres with magnetic cores. RSC Adv 5(63):51446–51453

    CAS  Article  Google Scholar 

  69. Zhang Y, Yan W, Sun Z, Pan C, Mi X, Zhao G, Gao J (2015b) Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption. Carbohydr Polym 117:657–665

    CAS  PubMed  Article  Google Scholar 

  70. Zhu X-Z, Huo G-S, Ni J, Song Q (2017) Removal of tungsten and vanadium from molybdate solutions using ion exchange resin. Trans Nonferrous Met Soc China 27(12):2727–2732. https://doi.org/10.1016/S1003-6326(17)60301-7

    CAS  Article  Google Scholar 

  71. Zhu H, Xiao X, Guo Z, Han X, Liang Y, Zhang Y, Zhou C (2018) Adsorption of vanadium (V) on natural kaolinite and montmorillonite: characteristics and mechanism. Appl Clay Sci 161:310–316. https://doi.org/10.1016/j.clay.2018.04.035

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Research Council of Niroo Research Institute (NRI) for financial support to this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mansoor Anbia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salehi, S., Anbia, M. Performance comparison of chitosan–clinoptilolite nanocomposites as adsorbents for vanadium in aqueous media. Cellulose 26, 5321–5345 (2019). https://doi.org/10.1007/s10570-019-02450-9

Download citation

Keywords

  • Chitosan
  • Clinoptilolite
  • Vanadium
  • Diethylenetriamine
  • Thiodiethanethiol