Skip to main content

Advertisement

Log in

Renewable resource based hyperbranched epoxy thermosetting nanocomposite with cellulose nanofiber as a sustainable material

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Renewable resource based hyperbranched epoxy nanocomposites have been fabricated with high tensile strength, good visual transparency, high chemical resistance and biodegradability by incorporating cellulose nanofiber (CNF) at a low dose level. The chemical structures of the nanocomposites have been confirmed by the FTIR, NMR and X-ray diffraction analyses. The morphological study by TEM analysis revealed the formation of nanofibers (diameter of ~ 40 nm and length of ~ 10 μm) and their uniform dispersion in the polymer matrix. The cured thermosets exhibited good mechanical properties like tensile strength (32 MPa), impact resistance (18.91 kJ/m), scratch hardness (> 10 kg); excellent thermal stability (245 °C), chemical resistance and biodegradability. These results have been improved with the increase of CNF percentage in the epoxy matrix. The thermosets of the nanocomposites showed visual transparency of about 82% which is almost similar to the pristine epoxy. Hence, the visual transparency, good mechanical properties (tensile strength, impact resistance etc.), chemical resistance and biodegradability of the thermoset make it suitable to be used as a sustainable material for different potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adcock LH, Gray CH (1956) Metabolism of sorbitol. Nature 177:329

    Article  CAS  PubMed  Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials) Volume 08.03 Plastics (III) Designation: D 5338–98 (2004) Determining aerobic biodegradation of plastic materials under controlled composting conditions. ASTM, West Conshohocken

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  PubMed  Google Scholar 

  • Barua S, Das G, Aidew L, Buragohain AK, Karak N (2013) Copper–copper oxide coated nanofibrillar cellulose: a promising biomaterial. RSC Adv 3:14997–15004

    Article  CAS  Google Scholar 

  • Bitinis N, Hernández M, Verdejo R, Kenny JM, Lopez-Manchado MA (2011) Recent advances in clay/polymer nanocomposites. Adv Mater 23:5229–5236

    Article  CAS  PubMed  Google Scholar 

  • Chang AC, Chen S, Carter KR (2018) Cellulose nanocrystal surface modification via grafting-from sonogashira coupling of poly(ethynylene-fluorene). Cellulose 25:5731–5738

    Article  CAS  Google Scholar 

  • Chen C, Deng S, Yang Y, Yang D, Ye T, Li D (2018) Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties. Cellulose 25:5063–5070

    Article  CAS  Google Scholar 

  • Claro P, de Campos A, Corrêa A, Rodrigues V, Luchesi B, Silva L, Tonoli G, Mattoso L, Marconcini J (2019) Curaua and eucalyptus nanofiber films by continuous casting: mixture of cellulose nanocrystals and nanofibrils. Cellulose. https://doi.org/10.1007/s10570-019-02280-9

    Article  Google Scholar 

  • De B, Karak N (2013) Novel high performance tough hyperbranched epoxy by an A2 + B3 polycondensation reaction. J Mater Chem A 1:348–353

    Article  CAS  Google Scholar 

  • De B, Gupta K, Mandal M, Karak N (2014) Biodegradable hyperbranched epoxy from castor oil-based hyperbranched polyester polyol. ACS Sustain Chem Eng 2:445–453

    Article  CAS  Google Scholar 

  • Duarah R, Karak N (2015) A starch based sustainable tough hyperbranched epoxy thermoset. RSC Adv 5:64456–64465

    Article  CAS  Google Scholar 

  • Duarah R, Singh YP, Mandal BB, Karak N (2016) Sustainable starch modified polyol based tough, biocompatible, hyperbranched polyurethane with a shape memory attribute. New J Chem 40:5152–5163

    Article  CAS  Google Scholar 

  • Einchhorn SJ, Dufresne A, Aranguren MM, Capadona JR, Rowan SJ, Weder C, Veigel S (2010) Review: current international research into cellulose nanofibres and composites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Gilmer CM, Bowden NB (2018) Reactive epoxy nanofiltration membranes with disulfide bonds for the separation of multicomponent chemical mixtures. ACS Omega 3:10216–10224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazarika D, Karak N (2015) Waterborne sustainable tough hyperbranched aliphatic polyester thermosets. ACS Sustain Chem Eng 3:2458–2468

    Article  CAS  Google Scholar 

  • Lee H, Neville K (1967) Handbook of epoxy resins. McGraw-Hill, New York

    Google Scholar 

  • Lu Y, Larock RC (2009) Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. Chem Sus Chem 2:136–147

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  • Parit M, Saha P, Davis VA, Jiang Z (2018) Transparent and homogenous cellulose nanocrystal/lignin UV-protection films. ACS Omega 3:10679–10691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:8

    Article  CAS  Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  • Saikia A, Karak N (2017) Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polym Degrad Stab 135:8–17

    Article  CAS  Google Scholar 

  • Samir SA, Ahmed M, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sen AK, Kumar S (2010) Coir-fiber-based fire retardant nano filler for epoxycomposites. J Therm Anal Calorim 101:265–271

    Article  CAS  Google Scholar 

  • Sestoft L (1985) An evaluation of biochemical aspects of intravenous fructose, sorbitol and xylitol administration in man. Acta Anaesthesiol Scand 29:19–29

    Article  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Soni B, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589

    Article  CAS  PubMed  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Weder C (2010) Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces 2:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Van Soest JJ, Tournois H, de Wit D, Vliegenthart JF (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201–214

    Article  Google Scholar 

  • Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  CAS  Google Scholar 

  • Xiao B, Sun X, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319

    Article  CAS  Google Scholar 

  • Zhang D, Jia D (2006) Synthesis of novel low-viscosity liquid epoxidized aromatic hyperbranched polymers. Eur Polym J 42:711–714

    Article  CAS  Google Scholar 

  • Zhao S, Wang Z, Zhang W, Li J, Zhang S, Huang A (2018) Dopamine-mediated pre-crosslinked cellulose/polyurethane block elastomer for the preparation of robust biocomposites. ACS Omega 3:10657–10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Ganán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Mr. Joston P. Nongkynrih and Mr. Dannis Bareh of Sophisticated Analytical Instrument Facility (SAIF), North-Eastern Hills University, Shillong for helping with the TEM analysis and Sophisticated Analytical Instrumentation Centre (SAIC), Tezpur University, Tezpur for different analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Karak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, A., Debbarma, N. & Karak, N. Renewable resource based hyperbranched epoxy thermosetting nanocomposite with cellulose nanofiber as a sustainable material. Cellulose 26, 4743–4755 (2019). https://doi.org/10.1007/s10570-019-02443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02443-8

Keywords

Navigation