Surfactant mediated clofazimine release from nanocellulose-hydrogels

Abstract

The widely tunable physical and chemical characteristics of hydrogels make them advantageous in biomedical and pharmaceutical applications, yet their hydrophilic nature might discourage their use as drug delivery systems for poorly water soluble molecules. In this work we demonstrate the sustained release of a large amount of a lipophilic drug (clofazimine) from nanocellulose hydrogels. Hydrogels are formed via ionotropic gelation and loaded with up to 37 % w/w) of the hydrophobic molecule. The kinetic profile avoids the initial burst release and we demonstrate that the surfactant co-loading is a successful strategy to increase by about 50 times the drug solubility in water, without the need of complex fabrication steps.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Angiolini L, Valetti S, Cohen B, Feiler A, Douhal A (2018) Fluorescence imaging of antibiotic clofazimine encapsulated within mesoporous silica particle carriers: relevance to drug delivery and the effect on its release kinetics. Phys Chem Chem Phys 20(17):11,899–11,911

    Article  CAS  Google Scholar 

  2. Ashley GW, Henise J, Reid R, Santi DV (2013) Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc Natl Acad Sci 110(6):2318–2323

    Article  PubMed  Google Scholar 

  3. Baik J, Rosania GR (2012) Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization. PLoS ONE 7(10):e47,494

    Article  CAS  Google Scholar 

  4. Bakkour Y, Darcos V, Coumes F, Li S, Coudane J (2013) Brush-like amphiphilic copolymers based on polylactide and poly (ethylene glycol): synthesis, self-assembly and evaluation as drug carrier. Polymer 54(7):1746–1754

    Article  CAS  Google Scholar 

  5. Bannigan P, Durack E, Madden C, Lusi M, Hudson SP (2017) Role of biorelevant dissolution media in the selection of optimal salt forms of oral drugs: maximizing the gastrointestinal solubility and in vitro activity of the antimicrobial molecule, clofazimine. ACS Omega 2(12):8969–8981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolla G, Nangia A (2012) Clofazimine mesylate: a high solubility stable salt. Cryst Growth Des 12(12):6250–6259

    Article  CAS  Google Scholar 

  7. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    Article  CAS  Google Scholar 

  8. Chen MC, Tsai HW, Liu CT, Peng SF, Lai WY, Chen SJ, Chang Y, Sung HW (2009) A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials 30(11):2102–2111

    Article  CAS  PubMed  Google Scholar 

  9. Daoud-Mahammed S, Grossiord J, Bergua T, Amiel C, Couvreur P, Gref R (2008) Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs. J Biomed Mater Res Part A 86(3):736–748

    Article  CAS  Google Scholar 

  10. Darcos V, El Habnouni S, Nottelet B, El Ghzaoui A, Coudane J (2010) Well-defined pcl-graft-pdmaema prepared by ring-opening polymerisation and click chemistry. Polym Chem 1(3):280–282

    Article  CAS  Google Scholar 

  11. Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2(8):3403–3409

    Article  CAS  Google Scholar 

  12. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631

    Article  CAS  Google Scholar 

  13. Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14(9):3338–3345

    Article  CAS  PubMed  Google Scholar 

  14. Gunathilake TMSU, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, Nai-Shang L (2018) Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int J Biol Macromol 118:1055–1064

    Article  CAS  Google Scholar 

  15. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Controll Release 127(3):189–207

    Article  CAS  Google Scholar 

  16. Izadifar M, Haddadi A, Chen X, Kelly ME (2014) Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. Nanotechnology 26(1):012001

    Article  CAS  PubMed  Google Scholar 

  17. Jabeen S, Chat OA, Maswal M, Ashraf U, Rather GM, Dar AA (2015) Hydrogels of sodium alginate in cationic surfactants: surfactant dependent modulation of encapsulation/release toward ibuprofen. Carbohydr Polym 133:144–153

    Article  CAS  PubMed  Google Scholar 

  18. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321

    CAS  Google Scholar 

  19. Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5(5):442–453

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49

    Article  PubMed  PubMed Central  Google Scholar 

  21. Koizumi T, Panomsuk SP (1995) Release of medicaments from spherical matrices containing drug in suspension: theoretical aspects. Int J Pharm 116(1):45–49

    Article  CAS  Google Scholar 

  22. Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  23. Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

    Article  CAS  PubMed  Google Scholar 

  24. Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80

    Article  CAS  Google Scholar 

  25. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16,071

    Article  CAS  Google Scholar 

  26. Li S, Jasim A, Zhao W, Fu L, Ullah M, Shi Z, Yang G (2018) Fabrication of ph electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater Manuf 1:41–49

    Google Scholar 

  27. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62(11):1607–1621

    Article  CAS  PubMed  Google Scholar 

  28. Maestri CA, Abrami M, Hazan S, Chistè E, Golan Y, Rohrer J, Bernkop-Schnürch A, Grassi M, Scarpa M, Bettotti P (2017a) Role of sonication pre-treatment and cation valence in the sol-gel transition of nano-cellulose suspensions. Sci Rep 7(1):11,129

    Article  CAS  Google Scholar 

  29. Maestri CA, Bettotti P, Scarpa M (2017b) Fabrication of complex-shaped hydrogels by diffusion controlled gelation of nanocellulose crystallites. J Mater Chem B 5(40):8096–8104

    Article  CAS  Google Scholar 

  30. Maswal M, Chat OA, Jabeen S, Ashraf U, Masrat R, Shah RA, Dar AA (2015) Solubilization and co-solubilization of carbamazepine and nifedipine in mixed micellar systems: insights from surface tension, electronic absorption, fluorescence and hplc measurements. RSC Adv 5(10):7697–7712

    Article  CAS  Google Scholar 

  31. McKenzie M, Betts D, Suh A, Bui K, Kim LD, Cho H (2015) Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11):20,397–20,408

    Article  CAS  Google Scholar 

  32. Mehta RT (1996) Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutic efficacy in the beige mouse model of disseminated mycobacterium avium-m. Intracellulare complex infection. Antimicrob Agents Chemother 40(8):1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng Y, Wu C, Zhang J, Cao Q, Liu Q, Yu Y (2015) Amphiphilic alginate as a drug release vehicle for water-insoluble drugs. Colloid J 77(6):754–760

    Article  CAS  Google Scholar 

  34. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592

    Article  CAS  PubMed  Google Scholar 

  35. Narang AS, Srivastava AK (2002) Evaluation of solid dispersions of clofazimine. Drug Dev Ind Pharm 28(8):1001–1013

    Article  CAS  PubMed  Google Scholar 

  36. Nie H, Mo H, Zhang M, Song Y, Fang K, Taylor LS, Li T, Byrn SR (2015) Investigating the interaction pattern and structural elements of a drug-polymer complex at the molecular level. Mol Pharm 12(7):2459–2468

    Article  CAS  PubMed  Google Scholar 

  37. Niño MRR, Patino JR (1998) Surface tension of bovine serum albumin and tween 20 at the air-aqueous interface. J Am Oil Chem Soc 75(10):1241

    Article  Google Scholar 

  38. O’connor R, O’sullivan J, O’kennedy R (1995) The pharmacology, metabolism, and chemistry of clofazimine. Drug Metab Rev 27(4):591–614

    Article  PubMed  Google Scholar 

  39. O’Reilly JR, Corrigan OI, O’Driscoll CM (1994) The effect of simple micellar systems on the solubility and intestinal absorption of clofazimine (b663) in the anaesthetised rat. Int J Pharm 105(2):137–146

    Article  Google Scholar 

  40. Patel V, Misra A (1999) Encapsulation and stability of clofazimine liposomes. J Microencapsul 16(3):357–367

    Article  CAS  PubMed  Google Scholar 

  41. Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118

    Article  CAS  Google Scholar 

  42. Rehman N, Mir MA, Jan M, Amin A, Dar AA, Rather GM (2009) Mixed micellization and interfacial properties of polyoxyethylene sorbitan esters with cetylpyridinium chloride: a tensiometric study. J Surfactants Deterg 12(4):295–304

    Article  CAS  Google Scholar 

  43. Ritger PL, Peppas NA (1987) A simple equation for description of solute release i. fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controll Release 5(1):23–36

    Article  CAS  Google Scholar 

  44. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  PubMed  Google Scholar 

  45. Salem II, Steffan G, Düzgünes N (2003) Efficacy of clofazimine-modified cyclodextrin against mycobacterium avium complex in human macrophages. Int J Pharm 260(1):105–114

    Article  CAS  PubMed  Google Scholar 

  46. Schott MA, Domurado M, Leclercq L, Barbaud C, Domurado D (2013) Solubilization of water-insoluble drugs due to random amphiphilic and degradable poly (dimethylmalic acid) derivatives. Biomacromolecules 14(6):1936–1944

    Article  CAS  PubMed  Google Scholar 

  47. Seki T, Kawaguchi T, Endoh H, Ishikawa K, Juni K, Nakano M (1990) Controlled release of 3’, 5’-diester prodrugs of 5’-fluoro-2’-deoxyuridine from poly-l-lactic acid microspheres. J Pharm Sci 79(11):985–987

    Article  CAS  PubMed  Google Scholar 

  48. Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54

    Article  CAS  PubMed  Google Scholar 

  50. Sinclair GW, Peppas NA (1984) Analysis of non-fickian transport in polymers using simplified exponential expressions. J Membr Sci 17(3):329–331

    Article  CAS  Google Scholar 

  51. Sri B, Ashok V, Arkendu C (2012) As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1(2):642–61

    Google Scholar 

  52. Ullah MW, Ul-Islam M, Khan S, Kim Y, Park JK (2015) Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr Polym 132:286–294

    Article  CAS  PubMed  Google Scholar 

  53. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77

    Article  CAS  PubMed  Google Scholar 

  54. Vashist A, Vashist A, Gupta Y, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2(2):147–166

    Article  CAS  Google Scholar 

  55. Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H (2011) Reduction of clofazimine by mycobacterial type 2 nadh: quinone oxidoreductase a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286(12):10,276–10,287

    Article  CAS  Google Scholar 

  56. Zahedi P, Lee PI (2007) Solid molecular dispersions of poorly water-soluble drugs in poly (2-hydroxyethyl methacrylate) hydrogels. Eur J Pharm Biopharm 65(3):320–328

    Article  CAS  PubMed  Google Scholar 

  57. Zhang S, Anderson MA, Ao Y, Khakh BS, Fan J, Deming TJ, Sofroniew MV (2014) Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system. Biomaterials 35(6):1989–2000

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Feng J, McManus SA, Lu HD, Ristroph KD, Cho EJ, Dobrijevic EL, Chan HK, Prudhomme RK (2017a) Design and solidification of fast-releasing clofazimine nanoparticles for treatment of cryptosporidiosis. Mol Pharm 14(10):3480–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Feng J, McManus SA, Lu HD, Ristroph KD, Cho EJ, Dobrijevic EL, Chan HK, Prud’homme RK (2017b) Design and solidification of fast-releasing clofazimine nanoparticles for treatment of cryptosporidiosis. Mol Pharm 14(10):3480–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge SCA Östrand (Sweden) for the supply of cellulose material and Prof. M. Scarpa for fruitful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Bettotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2783 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piotto, C., Bettotti, P. Surfactant mediated clofazimine release from nanocellulose-hydrogels. Cellulose 26, 4579–4587 (2019). https://doi.org/10.1007/s10570-019-02407-y

Download citation

Keywords

  • Nanocellulose
  • Hydrophobic drug
  • Hydrogels
  • Drug release
  • Isosbestic point