Skip to main content

Modeling of acetosolv pulping of oil palm fronds using response surface methodology and wavelet neural networks

Abstract

Mathematical models based on response surface methodology (RSM) and wavelet neural networks (WNNs) in conjunction with a central composite design were developed in order to study the influence of pulping variables viz. acetic acid, temperature, time, and hydrochloric acid (catalyst) on the resulting pulp and paper properties (screened yield, kappa number, tensile and tear indices) during the acetosolv pulping of oil palm fronds. The performance analysis demonstrated the superiority of WNNs over RSM, in that the former reproduced the experimental results with percentage errors and mean squared errors between 3 and 8% and 0.0054–0.4514 respectively, which were much lower than those obtained by the RSM models with corresponding values of 12–40% and 0.0809–9.3044, further corroborating the goodness of fit of the WNNs models for simulating the acetosolv pulping of oil palm fronds. Based on this assessment, it validates the exceptional predictive ability of the WNNs in comparison to the RSM polynomial model.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Dapia S, Sixta H, Borgards A, Harms H, Parajo J (2003) TCF bleaching of hardwood pulps obtained in organic acid media: production of viscose-grade pulps. Holz als Roh-und Werkstoff 61:363–368

    Article  CAS  Google Scholar 

  • Ferrer A, Vega A, Rodríguez A, Jiménez L (2013) Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresour Technol 132:115–120

    Article  CAS  PubMed  Google Scholar 

  • Jiménez L, Angulo V, Caparrós S, Ariza J (2007) Comparison of polynomial and neural fuzzy models as applied to the ethanolamine pulping of vine shoots. Bioresour Technol 98:3440–3448

    Article  CAS  PubMed  Google Scholar 

  • Keynia F, Heydari A (2019) A new short-term energy price forecasting method based on wavelet neural network. Int J Math Oper Res 14:1–14

    Article  Google Scholar 

  • Kleinert TN (1971) Organosolv pulping and recovery process. Google Patents

  • Kleinert T, Tayenthal K (1931) Über neuere versuche zur trennung von cellulose und inkrusten verschiedener hölzer. Angew Chem 44:788–791

    Article  CAS  Google Scholar 

  • Leh CP, Rosli WW, Zainuddin Z, Tanaka R (2008) Optimisation of oxygen delignification in production of totally chlorine-free cellulose pulps from oil palm empty fruit bunch fibre. Ind Crops Prod 28:260–267

    Article  CAS  Google Scholar 

  • Ligero P, Villaverde J, Vega A, Bao M (2007) Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Ind Crops Prod 25:294–300

    Article  CAS  Google Scholar 

  • Mathworks (2016) Matlab Inc, Natick, MA, p 488

  • McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76:186–193

    CAS  Google Scholar 

  • Mussatto SI, Dragone G, Rocha GJ, Roberto IC (2006) Optimum operating conditions for brewer’s spent grain soda pulping. Carbohydr Polym 64:22–28

    Article  CAS  Google Scholar 

  • Nasrullah R (2013) Pengoptimuman pemulpaan asetosolv pelepah kelapa sawit dan kesan pencampurannya dengan pulpa sekunder. Ph.D. Thesis, Universiti Sains Malaysia

  • Nimz H, Granzow C, Berg A (1986) Acetosolv pulping. Eur J Wood Wood Prod 44:362

    Article  CAS  Google Scholar 

  • Page D (1969) A theory for the tensile strength of paper. Tappi 52:674–681

    CAS  Google Scholar 

  • Rodríguez A, Serrano L, Moral A, Pérez A, Jiménez L (2008) Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresour Technol 99:1743–1749

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez A, Sánchez R, Ferrer A, Requejo A (2011) Simulation of Hesperaloe funifera diethanolamine pulping by polynomial and neural fuzzy models. Chem Eng Res Des 89:648–656

    Article  CAS  Google Scholar 

  • Sahin HT, Young RA (2008) Auto-catalyzed acetic acid pulping of jute. Ind Crops Prod 28:24–28

    Article  CAS  Google Scholar 

  • Sarkanen KV (1980) Acid-catalyzed delignification of lignocellulosics in organic solvents. In: Progress in biomass conversion, vol 2. Elsevier, pp 127–144

  • Shimada K, Hosoya S, Tomimura Y (1991) International symposium on wood and pulping. Chemistry notes. TAPPI Press, Atlanta

    Google Scholar 

  • Sixta H et al (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11:73–83

    Article  CAS  Google Scholar 

  • Tu Q, Fu S, Zhan H, Chai X, Lucia LA (2008) Kinetic modeling of formic acid pulping of bagasse. J Agric Food Chem 56:3097–3101

    Article  CAS  PubMed  Google Scholar 

  • Turkan Y, Hong J, Laflamme S, Puri N (2018) Adaptive wavelet neural network for terrestrial laser scanner-based crack detection. Autom Constr 94:191–202

    Article  Google Scholar 

  • Vázquez G, Antorrena G, González J (1995) Kinetics of acid-catalysed delignification of Eucalyptus globulus wood by acetic acid. Wood Sci Technol 29:267–275

    Article  Google Scholar 

  • Vázquez G, Antorrena G, González J, Freire S, Lopez S (1997) Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresour Technol 59:121–127

    Article  Google Scholar 

  • Wan Rosli W, Law K, Zainuddin Z, Asro R (2004) Effect of pulping variables on the characteristics of oil-palm frond-fiber. Bioresour Technol 93:233–240

    Article  CAS  PubMed  Google Scholar 

  • Wanrosli W, Mazlan I, Law K, Nasrullah R (2011) Influences of the operating variables of acetosolv pulping on pulp properties of oil palm frond fibres. Maderas Ciencia y tecnología 13:193–202

    Article  CAS  Google Scholar 

  • Xu L, Du X, Wang B (2018) Short-term traffic flow prediction model of wavelet neural network based on mind evolutionary algorithm. Int J Pattern Recognit Artif Intell. https://doi.org/10.1142/S0218001418500416

    Article  Google Scholar 

  • Zainuddin Z, Ong P (2012) An effective and novel wavelet neural approach in classifying type 2 diabetics. Neural Netw World 22:407–428

    Article  Google Scholar 

  • Zainuddin Z, Wan Daud WR, Pauline O, Shafie A (2011) Wavelet neural networks applied to pulping of oil palm fronds. Bioresour Technol 102:10978–10986

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Benveniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3:889–898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from Universiti Sains Malaysia through Research University Grants No. 1001/PTEKIND/8140151 and 1001/PTEKIND/814240, and Directorate General of Higher Education of Indonesia for sponsoring postgraduate studies of Nasrullah is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarita Zainuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razali, N., Ong, P., Ibrahim, M. et al. Modeling of acetosolv pulping of oil palm fronds using response surface methodology and wavelet neural networks. Cellulose 26, 4615–4628 (2019). https://doi.org/10.1007/s10570-019-02406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02406-z

Keywords

  • Oil palm fronds
  • Wavelet neural networks
  • Response surface methodology
  • Acetosolv pulping
  • Environmentally friendly process
  • Pulp and paper properties