Skip to main content

Advertisement

Log in

Facile preparation of fluorescence-labelled nanofibrillated cellulose (NFC) toward revealing spatial distribution and the interface

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose (NFC) has been widely used in bio-composites and plays a critical role of interface phase in determining the final physical properties. However, it remains difficult to directly observe NFC and its network-like phase within its related composite. Herein, we report a facile and low-cost approach to visualize three-dimensional (3D) distribution of NFC and its interfacial morphology with confocal laser scanning microscopy. In this work, coumarin-3-carboxylic acid (C3) was chemically linked with TEMPO-oxidized nanofibrillated cellulose (TNFC) via amidation process with the aid of ethylenediamine, leading to the formation of fluorescent labelled nanocellulose (TNFC-C3). TNFC-C3 was then compounded with poly(vinyl alcohol) (PVA) as a reinforcing nanofiller because of abundant molecular hydrogen-bonding interactions. The spatial distribution and interfacial bonding characteristics of TNFC in composites were investigated. Fluorescence scanning shows a clear 3D network structure of TNFC-C3 in TNFC-C3/PVA composite. More importantly, TNFC-C3/PVA composites show increased mechanical strength from 7.5 to 23.2 MPa with the increase of TNFC-C3 content, indicating that a small number of C3-grafting result in high-quality of fluorescence resolution without sacrificing molecular interactions and reinforcing effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379

    Article  CAS  Google Scholar 

  • Abitbol T, Kam D, Levi-Kalisman Y et al (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933

    Article  CAS  PubMed  Google Scholar 

  • Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570

    Article  CAS  Google Scholar 

  • Benítez AJ, Lossada F, Zhu B et al (2016) Understanding toughness in bioinspired cellulose nanofibril/polymer nanocomposites. Biomacromol 17:2417–2426

    Article  CAS  Google Scholar 

  • Bian H, Wei L, Lin C et al (2018) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6:4821–4828

    Article  CAS  Google Scholar 

  • Carosio F, Kochumalayil J, Fina A, Berglund LA (2016) Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv Mater Interfaces 3:1–5

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Rojas OJ et al (2015) Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Adv 5:90742–90749

    Article  CAS  Google Scholar 

  • Chen Z, Zhang J, Xiao P et al (2018) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939

    Article  CAS  Google Scholar 

  • Fatona A, Berry RM, Brook MA, Moran-Mirabal JM (2018) Versatile surface modification of cellulose fibers and cellulose nanocrystals through modular triazinyl chemistry. Chem Mater 30:2424–2435

    Article  CAS  Google Scholar 

  • Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoci A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446

    Article  CAS  Google Scholar 

  • González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  PubMed  Google Scholar 

  • Henriksson M, Berglund L, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585

    Article  CAS  Google Scholar 

  • Huang J, Wang D, Lu Y et al (2013) Surface zwitterionically functionalized PVA-co-PE nanofiber materials by click chemistry. RSC Adv 3:20922–20929

    Article  CAS  Google Scholar 

  • Huo J, Zheng Y, Pang S, Wang Q (2013) Assembly of novel Tb3+/Eu3+ sensitized cellulose gels and their emission behaviors. Cellulose 20:841–848

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Lagerwall JPF, Schütz C, Salajkova M et al (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12

    Article  CAS  Google Scholar 

  • Li Z, Shen J, Abdalla I et al (2017) Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 36:341–348

    Article  CAS  Google Scholar 

  • Li Z, Zhu M, Qiu Q et al (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733

    Article  CAS  Google Scholar 

  • Liu Y, Luo PG, Sun Y (2015) Carbon “quantum” dots for fluorescence labeling of Cells. ACS Appl Mater Interfaces 7:19439–19445

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Shao Z, Wang J et al (2016a) Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries. RSC Adv 6:97912–97920

    Article  CAS  Google Scholar 

  • Liu L, Li L, Qing Y et al (2016b) Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils. Polym Chem 7:7142–7151

    Article  CAS  Google Scholar 

  • Lu Z, Si L, Dang W, Zhao Y (2018) Transparent and mechanically robust poly(para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos Part A Appl Sci Manuf 115:321–330

    Article  CAS  Google Scholar 

  • Mashkour M, Kimura T, Kimura F et al (2014) Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque. Biomacromol 15:60–65

    Article  CAS  Google Scholar 

  • Meesorn W, Shirole A, Vanhecke D et al (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374

    Article  CAS  Google Scholar 

  • Oh SY, Il YD, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  PubMed  Google Scholar 

  • Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Wang S, Xu H, Hao X (2017) Preparation, properties and formation mechanism of cellulose/polyvinyl alcohol bio-composite hydrogel membranes. N J Chem 41:6564–6573

    Article  CAS  Google Scholar 

  • Saito T (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  • Schütz C, Sort J, Bacsik Z et al (2012) Hard and transparent films formed by nanocellulose—TIO2 nanoparticle hybrids. PLoS ONE 7:e45828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644

    Article  CAS  Google Scholar 

  • Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Nordli HR, Pukstad B et al (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Butchosa N, Zhou Q (2015) A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol). Adv Mater 27:2070–2076

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Wang MJ (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 4:2830–2837

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Liu B (2010) Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity. Anal Chem 82:8604–8610

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cheng Q, Lin L et al (2014) Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang M, Huang J et al (2018) Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J Energy Inst. https://doi.org/10.1016/j.joei.2018.10.012

    Article  Google Scholar 

  • Weishaupt R, Siqueira G, Schubert M et al (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromol 16:3640–3650

    Article  CAS  Google Scholar 

  • Xu S, Yu W, Jing M et al (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121:2108–2117

    Article  CAS  Google Scholar 

  • Zammarano M, Maupin PH, Sung L et al (2011) Revealing the interface in polymer nanocomposites. ACS Nano 5:3391–3399

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu J, Guan M et al (2018) Nanofibrillated cellulose (NFC) as a pore size mediator in the preparation of thermally resistant separators for lithium ion batteries. ACS Sustain Chem Eng 6:4838–4844

    Article  CAS  Google Scholar 

  • Zhao Y, Liu Z, Su B et al (2015) Property enhancement of PP-EPDM thermoplastic vulcanizates via shear-induced break-up of nano-rubber aggregates and molecular orientation of the matrix. Polymer 63:170–178

    Article  CAS  Google Scholar 

  • Zhao Y, Si L, Wang L et al (2017) Tuning the mechanical properties of weakly phase-separated olefin block copolymer by establishing co-crystallization structure with the aid of linear polyethylene: the dependence on molecular chain length. CrystEngComm 19:2884–2893

    Article  CAS  Google Scholar 

  • Zhao Y, Dang W, Lu Z et al (2018a) Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO2 and nanofibrillated cellulose. Cellulose 25:3913–3925

    Article  CAS  Google Scholar 

  • Zhao Y, Dang W, Si L, Lu Z (2018b) Enhanced mechanical and dielectric properties of aramid fiber/mica-nanofibrillated cellulose composite paper with biomimetic multilayered structure. Cellulose. https://doi.org/10.1007/s10570-018-2170-z

    Article  Google Scholar 

  • Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the financial support from the Natural National Science Foundation of China (Grant No. 21704058), Key Laboratory Research Project of Shaanxi Education Department (Project No. 18JS011), State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19201), and the Fundamental Research Funds for the Central Universities (Project No. 31020180QD117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Dang, W., Ma, Q. et al. Facile preparation of fluorescence-labelled nanofibrillated cellulose (NFC) toward revealing spatial distribution and the interface. Cellulose 26, 4345–4355 (2019). https://doi.org/10.1007/s10570-019-02404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02404-1

Keywords

Navigation