Skip to main content

Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA

Abstract

Expanded polystyrene foams are lightweight and cheap, but they have excellent strength and insulation properties. However, their inability to biodegrade in traditional landfill situations makes their disposal problematic. Starch, a polysaccharide, has the potential to replace synthetic thermoplastics for some applications but starch-based foams are hydrophilic, which limits their applications. In this work, polylactide (PLA), a sustainably derived and industrially compostable polymer, was added to starch/cellulose composite foams to enhance their water barrier properties. PLA powder at various weight % was mixed with moistened starch and cellulose mixture, and composite foams were prepared by compression moulding at 220 °C. The thermomechanical and viscoelastic properties of the produced foam materials were analysed by thermogravimetric analysis, dynamic mechanical thermal analysis, mechanical testing, and also by the 3-point compressive mechanical quasi-static testing. It was found that the tensile strength of the composite foams increased with an increase in the PLA loading, which increased from 2.50 MPa for 0% PLA to 3.27 MPa for 9.72% PLA loading. The flexural strength also increased from 345.91 kPa for the 0% PLA to 378.53 kPa for the composite foam containing 4.86% PLA; beyond which the flexural strength started decreasing with an increase in PLA loading. Similarly, the stiffness of the starch/cellulose composite also increased with an increase in PLA loading up to 4.86%, and further increase in PLA loading decreased the stiffness. The flexural modulus of the composite foams increased from 522 MPa for 0% PLA loading to 542.85 MPa for the 4.86% PLA loading. The thermal stability of the starch/cellulose composite foams also increased and the water absorbency decreased with the increased PLA loading.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abdel Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:296–301

    Article  CAS  Google Scholar 

  • Ali A, Xie F, Yu L, Liu H, Meng L, Khalid S, Chen L (2018) Preparation and characterization of starch-based composite films reinforced by polysaccharide-based crystals. Composites B 133:122–128

    Article  CAS  Google Scholar 

  • Avérous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41:4157–4167

    Article  Google Scholar 

  • Avérous L, Fringant C, Moro L (2001) Plasticized starch–cellulose interactions in polysaccharide composites. Polymer 42:6565–6572

    Article  Google Scholar 

  • Carmona VB, De Campos A, Marconcini JM, Mattoso LHC (2014) Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibres by non-isothermal procedures. J Therm Anal Calorim 115:153–160

    Article  CAS  Google Scholar 

  • Chen J, Long Z, Wang J, Wu M, Wang F, Wang B, Lv W (2017) Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films. Cellulose 24:4449–4459

    Article  CAS  Google Scholar 

  • Corradini E, de Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2006) Mechanical and morphological characterization of starch/zein blends plasticised with glycerol. J Appl Polym Sci 101:4133–4139

    Article  CAS  Google Scholar 

  • Deng Y, Catchmark JM (2014) Insoluble starch composite foams produced through microwave expansion. Carbohydr Polym 111:864–869

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos BH, De Souza Do Prado K, Jacinto AA, Da Silva Spinacé MA (2018) Influence of sugarcane bagasse fibre size on biodegradable composites of thermoplastic starch. J Renew Mater 6:176–182

    Article  Google Scholar 

  • Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Cassava/sugar palm fibre reinforced cassava starch hybrid composites: physical, thermal and structural properties. Int J Biolog Macromol 101:75–83

    Article  CAS  Google Scholar 

  • Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biolog Macromol 112:442–447

    Article  CAS  Google Scholar 

  • Ghorpade VM, Gennadios A, Hanna MA (2001) Laboratory composting of extruded poly(lactic acid) sheets. Bioresour Technol 76:57–61

    Article  CAS  PubMed  Google Scholar 

  • Glenn GM, Orts WJ, Nobes GAR (2001a) Starch, fibre and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212

    Article  CAS  Google Scholar 

  • Glenn GM, Orts WJ, Nobes GAR, Gray GM (2001b) In situ laminating process for baked starch-based foams. Ind Crop Prod 14:125–134

    Article  CAS  Google Scholar 

  • Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956

    Article  CAS  Google Scholar 

  • Ibrahim H, Mehanny S, Darwish L, Farag M (2017) A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibres. J Polym Environ 26:1–14

    Google Scholar 

  • Kacurakova M, Smith C, Gidley J, Wilson H (2002) Molecular interaction in bacterial cellulose composite studied by 1D FT-IR and dynamics 2D-FT-IR. Carbohydr Res 337:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  • Kim J-Y, Huber KC (2016) Preparation and characterization of corn starch-β-carotene composites. Carbohydr Polym 136:394–401

    Article  CAS  PubMed  Google Scholar 

  • Lawton JW, Shogren RL, Tiefenbacher KF (1999) Effect of batter solids and starch type on the structure of baked starch foams. Cereal Chem 76:682–687

    Article  CAS  Google Scholar 

  • Liu D, Dong Y, Bhattacharyya D, Sui G (2017) Novel sandwiched structures in starch/cellulose nanowhiskers (CNWs) composite films. Compos Commun 4:5–9

    Article  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–186

    Article  CAS  Google Scholar 

  • Martin O, Schwach E, Avérous L, Couturier Y (2001) Properties of biodegradable multilayer films based on plasticized wheat starch. Stärke 53:372–380

    Article  CAS  Google Scholar 

  • Mbey JA, Thomas F (2015) Components interactions controlling starch–kaolinite composite films properties. Carbohydr Polym 117:739–745

    Article  CAS  PubMed  Google Scholar 

  • Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Jiménez A, González-Martínez C, Chiralt A (2016) Influence of plasticizers on thermal properties and crystallisation behaviour of Poly(lactic acid) films obtained by compression moulding. Polym Int 65:970–978

    Article  CAS  Google Scholar 

  • Muneer F, Andersson M, Koch K, Menzel C, Hedenqvist MS, Gällstedt M, Plivelic TS, Kuktaite R (2015) Nanostructural morphology of plasticized wheat gluten and modified potato starch composites: relationship to mechanical and barrier properties. Biomacromolecules 16:695–705

    Article  CAS  PubMed  Google Scholar 

  • Noorbakhsh-Soltani SM, Zerafat MM, Sabbaghi S (2018) A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym 189:48–55

    Article  CAS  PubMed  Google Scholar 

  • Orue A, Corcuera MA, Pena C, Eceiza A, Arbelaiz A (2016) Bionanocomposites based on thermoplastic starch and cellulose nanofibers. J Thermoplast Compos Mater 29:817–832

    Article  CAS  Google Scholar 

  • Patil NV, Netravali AN (2016) Microfibrillated cellulose-reinforced nonedible starch-based thermoset biocomposites. J Appl Polym Sci 133:43803

    Article  CAS  Google Scholar 

  • Preechawong D, Peesan M, Supaphol P, Rujiravanit R (2005) Preparation and characterisation of starch/poly(l-lactic acid) hybrid foams. Carbohyd Polym 59:329–337

    Article  CAS  Google Scholar 

  • Romero-Bastida CA, Tapia-Blácido DR, Méndez-Montealvo G, Bello-Pérez LA, Velázquez G, Alvarez-Ramirez J (2016) Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydr Polym 152:351–360

    Article  CAS  PubMed  Google Scholar 

  • Sagnelli D, Kirkensgaard JJK, Giosafatto CVL, Ogrodowicz N, Kruczał K, Mikkelsen MS, Maigret J-E, Lourdin D, Mortensen K, Blennow A (2017) All-natural bio-plastics using starch-beta-glucan composites. Carbohydr Polym 172:237–245

    Article  CAS  PubMed  Google Scholar 

  • Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CM (2013) Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92:19–22

    Article  CAS  PubMed  Google Scholar 

  • Shogren RL, Lawton JW, Doane WM, Tiefenbacher KF (1998) Structure and morphology of baked starch foams. Polymer 39:6649–6655

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Supaphol P, Rujiravanit R (2004) Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohyd Polym 58:53–63

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Nittaya L, Atitaya N, Natthawut Y, Tawee T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Composites A 78:246–263

    Article  CAS  Google Scholar 

  • Spiridon I, Teacǎ C-A, Bodîrlǎu R, Bercea M (2013) Behaviour of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environ 21:431–440

    Article  CAS  Google Scholar 

  • Stepto RF (2006) Understanding the processing of thermoplastic starch. Macromol Symp 245–246:571–577

    Article  CAS  Google Scholar 

  • Subramaniam A (1990) Natural rubber. In: Ohm RF (ed) The Vanderbilt rubber handbook. R.T. Vanderbilt Company, Norwalk, pp 23–43

    Google Scholar 

  • Swanson CL, Shogren RL, Fanta GF, Imam SH (1993) Starch-plastic materials—preparation, physical properties, and biodegradability (a review of recent USDA research). J Environ Polym Degrad 1:155–166

    Article  CAS  Google Scholar 

  • Tabassi N, Moghbeli MR, Ghasemi I (2016) Thermoplastic starch/cellulose nanocrystal green composites prepared in an internal mixer. Iran Polym J 25:45–57

    Article  CAS  Google Scholar 

  • Wang P, Chen F, Zhang H, Meng W, Sun Y, Liu C (2017) Large-scale preparation of jute-fiber-reinforced starch-based composites with high mechanical strength and optimised biodegradability. Stärke 69:1700052

    Article  CAS  Google Scholar 

  • Zhang C-W, Li F-Y, Li J-F, Wang L-M, Xie Q, Xu J, Chen S (2017) A new biodegradable composite with open cell by combining modified starch and plant fibres. Mater Design 120:222–229

    Article  CAS  Google Scholar 

  • Zhou J, Song J, Parker R (2006) Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydr Polym 63:466–475

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Business, Innovation, and Employment (MBIE) of the Government of New Zealand (Grant No. BPLY1302) through the Biopolymer Network Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2190 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.M., Le Guen, M.J., Tucker, N. et al. Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose 26, 4463–4478 (2019). https://doi.org/10.1007/s10570-019-02393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02393-1

Keywords

  • Biocomposite foams
  • Starch/cellulose composite foams
  • PLA
  • Rheology
  • Thermomechanical properties