Alsmeyer F, Koß H-J, Marquardt W (2004) Indirect spectral hard modeling for the analysis of reactive and interacting mixtures. Appl Spectrosc 58:975–985. https://doi.org/10.1366/0003702041655368
Article
CAS
PubMed
Google Scholar
Bansal P, Vowell BJ, Hall M et al (2012) Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 107:243–250. https://doi.org/10.1016/j.biortech.2011.12.063
Article
CAS
PubMed
Google Scholar
Bertran MS, Dale BE (1985) Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnol Bioeng 27:177–181. https://doi.org/10.1002/bit.260270212
Article
CAS
PubMed
Google Scholar
Billès E, Onwukamike KN, Coma V et al (2016) Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds. Carbohydr Polym 154:121–128. https://doi.org/10.1016/j.carbpol.2016.07.107
Article
CAS
PubMed
Google Scholar
Billès E, Coma V, Peruch F, Grelier S (2017) Water-soluble cellulose oligomer production by chemical and enzymatic synthesis: a mini-review. Polym Int 66:1227–1236. https://doi.org/10.1002/pi.5398
Article
CAS
Google Scholar
Boissou F, De Oliveira Vigier K, Estrine B et al (2014) Selective depolymerization of cellulose to low molecular weight cello-oligomers catalyzed by betaïne hydrochloride. ACS Sustain Chem Eng 2:2683–2689. https://doi.org/10.1021/sc500428n
Article
CAS
Google Scholar
Carrard G, Koivula A, Söderlund H, Béguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97:10342–10347. https://doi.org/10.1073/pnas.160216697
Article
CAS
PubMed
Google Scholar
Caulfield DF, Moore WE (1974) Effect of varying crystallinity of cellulose on enzymic hydrolysis. Wood Sci 6:375–379
CAS
Google Scholar
Caulfield DF, Steffes RA (1969) Water-induced recrystallization of cellulose. Tappi 52:1361–1368
CAS
Google Scholar
Cheng G, Varanasi P, Li C et al (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12:933–941. https://doi.org/10.1021/bm101240z
Article
CAS
Google Scholar
Engel P, Hein L, Spiess AC (2012) Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnol Biofuels 5:77. https://doi.org/10.1186/1754-6834-5-77
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan L, Lee Y, Beardmore D (1981) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23:419–424. https://doi.org/10.1002/bit.260230215
Article
CAS
Google Scholar
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
Article
CAS
Google Scholar
Granström M, Kindler A, Spiess A, et al (2016) Endoglucanase-induced production of cellulose oligomers. US 20160369314 A1
Hall M, Bansal P, Lee JH et al (2010) Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x
Article
CAS
PubMed
Google Scholar
Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. https://doi.org/10.1016/S0079-6700(01)00022-3
Article
CAS
Google Scholar
Heinze T, Dorn S, Schöbitz M et al (2008) Interactions of Ionic Liquids with Polysaccharides—2: cellulose. Macromol Symp 262:8–22. https://doi.org/10.1002/masy.200850202
Article
CAS
Google Scholar
Jäger G, Wu Z, Garschhammer K et al (2010) Practical screening of purified cellobiohydrolases and endoglucanases with α -cellulose and specification of hydrodynamics. Biotechnol Biofuels 3:1–12. https://doi.org/10.1186/1754-6834-3-18
Article
CAS
Google Scholar
Jäger G, Wulfhorst H, Zeithammel EU et al (2011) Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol J 6:74–85. https://doi.org/10.1021/cr900165z
Article
CAS
PubMed
Google Scholar
Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353. https://doi.org/10.1021/cr900165z
Article
CAS
PubMed
Google Scholar
Lee SB, Kim IH, Ryu DD, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25:33–51. https://doi.org/10.1002/bit.260250105
Article
CAS
PubMed
Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansfield SD, De Jong E, Stephens RS, Saddler JN (1997) Physical characterization of enzymatically modified kraft pulp fibers. J Biotechnol 57:205–216. https://doi.org/10.1016/S0168-1656(97)00100-4
Article
CAS
Google Scholar
Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329. https://doi.org/10.1016/S1369-5274(00)00211-3
Article
CAS
PubMed
Google Scholar
Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:1–16. https://doi.org/10.1186/1754-6834-4-41
Article
CAS
Google Scholar
Monsan P, Paul F (1995) Enzymatic synthesis of oligosaccharides. FEMS Microbiol Rev 16:187–192. https://doi.org/10.1016/0168-6445(94)00052-Z
Article
CAS
Google Scholar
Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10
Article
CAS
Google Scholar
Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chemie Int Ed 47:8047–8050. https://doi.org/10.1002/anie.200802879
Article
CAS
Google Scholar
Schenzel K, Almlöf H, Germgård U (2009) Quantitative analysis of the transformation process of cellulose I → cellulose II using NIR FT Raman spectroscopy and chemometric methods. Cellulose 16:407–415. https://doi.org/10.1007/s10570-009-9286-0
Article
CAS
Google Scholar
Schmid G, Biselli M, Wandrey C (1988) Preparation of cellodextrins and isolation of oligomeric and their characterization side components. Anal Biochem 175:573–583. https://doi.org/10.1016/0003-2697(88)90586-6
Article
CAS
PubMed
Google Scholar
Wang L, Zhang Y, Gao P et al (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93:443–456. https://doi.org/10.1002/bit.20730
Article
CAS
PubMed
Google Scholar
Yamasaki N, Ibuki I, Yaginuma Y, Tamura Y (2006) Cellooligosaccharide-containing composition. US 8349365 B2
Yang B, Willies DM, Wyman CE (2006) Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion. Biotechnol Bioeng 94:1122–1128. https://doi.org/10.1002/bit.20942
Article
CAS
PubMed
Google Scholar
Zavrel M, Bross D, Funke M et al (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. https://doi.org/10.1016/j.biortech.2008.11.052
Article
CAS
PubMed
Google Scholar
Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824. https://doi.org/10.1002/bit.20282
Article
CAS
PubMed
Google Scholar
Zhang J, Wang Y, Zhang L et al (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405. https://doi.org/10.1016/j.biortech.2013.10.009
Article
CAS
PubMed
Google Scholar