Enzymatic production of cello-oligomers with endoglucanases


Cello-oligomers have a wide application range and are gained from three different cello-oligomer production paths, which show different drawbacks, namely acid or alkaline hydrolysis of cellulose, chemical or enzymatic synthesis, and enzymatic hydrolysis of cellulose using cellulase mixtures. Therefore, this study aims at a novel route towards cello-oligomers using purified endoglucanases. From the renewable raw material cellulose, pretreated by an ionic liquid, cello-oligomers with a weight average degree of polymerization (DPW) of 65 were directly obtained by enzymatic hydrolysis. During hydrolysis, between 14.1 and 24.5 mass percent of monomeric and dimeric sugars were formed as byproduct. A second ionic liquid pretreatment of the cellulose, remaining after the first hydrolysis, and a second enzymatic hydrolysis resulted in cello-oligomers with a DP of 35. XRD deconvolution and Raman analysis confirmed that crystallinity remained unchanged during enzymatic cellulose hydrolysis.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Beta-glucosidases from Agrobacterium sp


Beta-glucosidases from A. niger


Endoglucanase from A. niger


Endoglucanase from B. amyloliquefaciens






Crystallinity index


Weight average degree of polymerization



[EMIM] [Ac]:

1-Ethyl-3-methylimidazolium acetate


Gel permeation chromatography


Ionic liquid


Multiangle laser light scattering


Refractive index


Endoglucanase from T. emersonii


Endoglucanase from T. maritima


Endoglucanase from T. longibrachiatum


X-ray diffraction


  1. Alsmeyer F, Koß H-J, Marquardt W (2004) Indirect spectral hard modeling for the analysis of reactive and interacting mixtures. Appl Spectrosc 58:975–985. https://doi.org/10.1366/0003702041655368

    Article  CAS  PubMed  Google Scholar 

  2. Bansal P, Vowell BJ, Hall M et al (2012) Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 107:243–250. https://doi.org/10.1016/j.biortech.2011.12.063

    Article  CAS  PubMed  Google Scholar 

  3. Bertran MS, Dale BE (1985) Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnol Bioeng 27:177–181. https://doi.org/10.1002/bit.260270212

    Article  CAS  PubMed  Google Scholar 

  4. Billès E, Onwukamike KN, Coma V et al (2016) Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds. Carbohydr Polym 154:121–128. https://doi.org/10.1016/j.carbpol.2016.07.107

    Article  CAS  PubMed  Google Scholar 

  5. Billès E, Coma V, Peruch F, Grelier S (2017) Water-soluble cellulose oligomer production by chemical and enzymatic synthesis: a mini-review. Polym Int 66:1227–1236. https://doi.org/10.1002/pi.5398

    Article  CAS  Google Scholar 

  6. Boissou F, De Oliveira Vigier K, Estrine B et al (2014) Selective depolymerization of cellulose to low molecular weight cello-oligomers catalyzed by betaïne hydrochloride. ACS Sustain Chem Eng 2:2683–2689. https://doi.org/10.1021/sc500428n

    Article  CAS  Google Scholar 

  7. Carrard G, Koivula A, Söderlund H, Béguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97:10342–10347. https://doi.org/10.1073/pnas.160216697

    Article  CAS  PubMed  Google Scholar 

  8. Caulfield DF, Moore WE (1974) Effect of varying crystallinity of cellulose on enzymic hydrolysis. Wood Sci 6:375–379

    CAS  Google Scholar 

  9. Caulfield DF, Steffes RA (1969) Water-induced recrystallization of cellulose. Tappi 52:1361–1368

    CAS  Google Scholar 

  10. Cheng G, Varanasi P, Li C et al (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12:933–941. https://doi.org/10.1021/bm101240z

    Article  CAS  Google Scholar 

  11. Engel P, Hein L, Spiess AC (2012) Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnol Biofuels 5:77. https://doi.org/10.1186/1754-6834-5-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan L, Lee Y, Beardmore D (1981) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23:419–424. https://doi.org/10.1002/bit.260230215

    Article  CAS  Google Scholar 

  13. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  14. Granström M, Kindler A, Spiess A, et al (2016) Endoglucanase-induced production of cellulose oligomers. US 20160369314 A1

  15. Hall M, Bansal P, Lee JH et al (2010) Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x

    Article  CAS  PubMed  Google Scholar 

  16. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. https://doi.org/10.1016/S0079-6700(01)00022-3

    Article  CAS  Google Scholar 

  17. Heinze T, Dorn S, Schöbitz M et al (2008) Interactions of Ionic Liquids with Polysaccharides—2: cellulose. Macromol Symp 262:8–22. https://doi.org/10.1002/masy.200850202

    Article  CAS  Google Scholar 

  18. Jäger G, Wu Z, Garschhammer K et al (2010) Practical screening of purified cellobiohydrolases and endoglucanases with α -cellulose and specification of hydrodynamics. Biotechnol Biofuels 3:1–12. https://doi.org/10.1186/1754-6834-3-18

    Article  CAS  Google Scholar 

  19. Jäger G, Wulfhorst H, Zeithammel EU et al (2011) Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol J 6:74–85. https://doi.org/10.1021/cr900165z

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353. https://doi.org/10.1021/cr900165z

    Article  CAS  PubMed  Google Scholar 

  21. Lee SB, Kim IH, Ryu DD, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25:33–51. https://doi.org/10.1002/bit.260250105

    Article  CAS  PubMed  Google Scholar 

  22. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mansfield SD, De Jong E, Stephens RS, Saddler JN (1997) Physical characterization of enzymatically modified kraft pulp fibers. J Biotechnol 57:205–216. https://doi.org/10.1016/S0168-1656(97)00100-4

    Article  CAS  Google Scholar 

  24. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329. https://doi.org/10.1016/S1369-5274(00)00211-3

    Article  CAS  PubMed  Google Scholar 

  25. Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:1–16. https://doi.org/10.1186/1754-6834-4-41

    Article  CAS  Google Scholar 

  26. Monsan P, Paul F (1995) Enzymatic synthesis of oligosaccharides. FEMS Microbiol Rev 16:187–192. https://doi.org/10.1016/0168-6445(94)00052-Z

    Article  CAS  Google Scholar 

  27. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  28. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chemie Int Ed 47:8047–8050. https://doi.org/10.1002/anie.200802879

    Article  CAS  Google Scholar 

  29. Schenzel K, Almlöf H, Germgård U (2009) Quantitative analysis of the transformation process of cellulose I → cellulose II using NIR FT Raman spectroscopy and chemometric methods. Cellulose 16:407–415. https://doi.org/10.1007/s10570-009-9286-0

    Article  CAS  Google Scholar 

  30. Schmid G, Biselli M, Wandrey C (1988) Preparation of cellodextrins and isolation of oligomeric and their characterization side components. Anal Biochem 175:573–583. https://doi.org/10.1016/0003-2697(88)90586-6

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Zhang Y, Gao P et al (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93:443–456. https://doi.org/10.1002/bit.20730

    Article  CAS  PubMed  Google Scholar 

  32. Yamasaki N, Ibuki I, Yaginuma Y, Tamura Y (2006) Cellooligosaccharide-containing composition. US 8349365 B2

  33. Yang B, Willies DM, Wyman CE (2006) Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion. Biotechnol Bioeng 94:1122–1128. https://doi.org/10.1002/bit.20942

    Article  CAS  PubMed  Google Scholar 

  34. Zavrel M, Bross D, Funke M et al (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. https://doi.org/10.1016/j.biortech.2008.11.052

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824. https://doi.org/10.1002/bit.20282

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Wang Y, Zhang L et al (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405. https://doi.org/10.1016/j.biortech.2013.10.009

    Article  CAS  PubMed  Google Scholar 

Download references


Parts of this work were performed as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities.

Author information



Corresponding author

Correspondence to Antje C. Spiess.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kluge, S., Bonhage, B., Viell, J. et al. Enzymatic production of cello-oligomers with endoglucanases. Cellulose 26, 4279–4290 (2019). https://doi.org/10.1007/s10570-019-02390-4

Download citation


  • Biocatalysis
  • Biomaterials
  • Biopolymers
  • Cello-oligomers
  • Endoglucanases
  • Ionic liquid