Bröckel U, Meier W, Wagner G (2013) Product design and engineering: formulation of gels and pastes. Wiley-VCH, Heidelberg
Book
Google Scholar
Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils. A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107
Article
CAS
Google Scholar
Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron (Oxford, England: 1993) 48:42–48
Article
CAS
Google Scholar
Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329
Article
CAS
PubMed
Google Scholar
Ebeling K (1980) A critical review of current theories for the refining of chemical pulps. Project 3384. Institute of Paper Chemistry, Appleton
Google Scholar
Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4(3):339–345
Article
Google Scholar
Fall AB, Lindstrom SB, Sundman O, Odberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir ACS J Surf Colloids 27(18):11332–11338
Article
CAS
Google Scholar
Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21(6):3951–3963
Article
CAS
Google Scholar
Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York
Book
Google Scholar
Fleischfresser BE, Freeland GN (1976) Measurement of external specific surface area of fibers by solution adsorption. J Appl Polym Sci 20(12):3453–3456
Article
CAS
Google Scholar
Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679
Article
CAS
PubMed
Google Scholar
French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588
Article
CAS
Google Scholar
Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575
Article
CAS
Google Scholar
Glatter O, Kratky O (eds) (1982) Instrumentataion, experimental technique, slit collimation. In: Small angle X-ray scattering. Academic Press, London
Gu F, Wang W, Cai Z, Xue F, Jin Y, Zhu JY (2018) Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 25(5):2861–2871
Article
CAS
Google Scholar
Hartman RR (1984) Mechanical treatment of pulp fibers for property development. Doctoral thesis, Lawrence University
Hu C, Zhao Y, Li K, Zhu JY, Gleisner R (2015) Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69(8):993–1000
CAS
Google Scholar
Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112
Article
CAS
Google Scholar
Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76
Article
CAS
Google Scholar
Jarvis MC (2018) Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos Trans R Soc Lond A Math Phys Eng Sci 376(2112):20170045
Article
CAS
Google Scholar
Kang T (2007) Role of external fibrillation in pulp and paper properties. Doctoral Thesis, Helsinki University of Technology
Kang T, Paulapuro H (2006) New mechanical treatment for chemical pulp. Proc Inst Mech Eng Part E J Process Mech Eng 220(3):161–166
Article
Google Scholar
Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Res 346(1):76–85
Article
CAS
Google Scholar
Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007a) Microfibril diameter in celery collenchyma cellulose. X-ray scattering and NMR evidence. Cellulose 14(3):235–246
Article
CAS
Google Scholar
Kennedy CJ, Šturcová A, Jarvis MC, Wess TJ (2007b) Hydration effects on spacing of primary-wall cellulose microfibrils. A small angle X-ray scattering study. Cellulose 14(5):401–408
Article
CAS
Google Scholar
Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999
Article
CAS
Google Scholar
Liu W, Wang B, Hou Q, Chen W, Wu M (2016) Effects of fibrillation on the wood fibers’ enzymatic hydrolysis enhanced by mechanical refining. Bioresour Technol 206:99–103
Article
CAS
PubMed
Google Scholar
Luukkonen P, Maloney T, Rantanen J, Paulapuro H, Yliruusi J (2001) Microcrystalline cellulose-water interaction—a novel approach using thermoporosimetry. Pharm Res 18(11):1562–1569
Article
CAS
PubMed
Google Scholar
Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10(2):2360–2375
Article
CAS
Google Scholar
Nechyporchuk O, Belgacem MN, Pignon F (2015) Concentration effect of TEMPO-oxidized nanofibrillated cellulose aqueous suspensions on the flow instabilities and small-angle X-ray scattering structural characterization. Cellulose 22(4):2197–2210
Article
CAS
Google Scholar
Page DH (ed) (1989) The beating of chemical pulps: the action and the effects. British Paper and Board Makers’ Assoc, London
Google Scholar
Penttila PA, Varnai A, Fernandez M, Kontro I, Liljestrom LP, Siila-aho M, Viikari L, Serimaa R (2013) Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrlysis. Cellulose 20:1031–1040
Article
CAS
Google Scholar
Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327(9–10):873–880
Article
CAS
PubMed
Google Scholar
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794
Article
CAS
Google Scholar
Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng Y (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5(77):63111–63122
Article
CAS
Google Scholar
Strobl GR (1970) A new method of evaluating slit-smeared small-angle X-ray scattering data. Acta Crystallogr Sect A: Found Crystallogr 26:367–375
Article
Google Scholar
Strobl GR (2007) The physics of polymers. Concepts for understanding their structures and behavior. Springer, Berlin
Google Scholar
Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238
Article
CAS
Google Scholar
Tanaka A (2012) Nanocellulose characterization with mechanical fractionation. Nordic Pulp Paper Res J 27(04):689–694
Article
CAS
Google Scholar
Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589
Article
CAS
Google Scholar
Tanaka C, Yui Y, Isogai A (2015) TEMPO-mediated oxidation of cotton cellulose fabrics under weakly acidic or neutral conditions. Sen’i Gakkaishi 71(5):191–196
Article
CAS
Google Scholar
TAPPI (2001) Specific external surface of pulp. TAPPI(T 226). https://research.cnr.ncsu.edu/wpsanalytical/documents/T226.PDF
Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476
Article
CAS
PubMed
Google Scholar
Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC (2014) Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 21(6):3887–3895
Article
CAS
Google Scholar
Tsuchida JE, Rezende CA, de Oliveira-Silva R, Lima MA, d’Eurydice MN, Polikarpov I, Bonagamba TJ (2014) Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels 7(1):127
PubMed
PubMed Central
Google Scholar
Udomkichdecha W, Chiarakorn S, Potiyaraj P (2002) Relationships between fibrillation behavior of Lyocell fibers and their physical properties. Text Res J 72(11):939–943
Article
CAS
Google Scholar
van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941
Article
Google Scholar
Wang X, Maloney TC, Paulapuro H (2003) Fibre fibrillation and its impact on sheet properties. Paperi ja PUU-Paper and Timber 89(3):148–151
Google Scholar
Wang QQ, He Z, Zhu Z, Zhang Y-HP, Ni Y, Luo XL, Zhu JY (2012a) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389
Article
CAS
PubMed
Google Scholar
Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012b) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643
Article
CAS
Google Scholar
Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761
Article
CAS
Google Scholar