Skip to main content

A structural fibrillation parameter from small angle X-ray scattering to quantify pulp refining

Abstract

Pulp fibrillation results from refining and is of prime importance for papermaking. Yet a structural parameter reflecting the extent of fibrillation remains elusive. In this work, we demonstrate that in refined pulps, the interfibrillar distance at water saturated state (Ls), as derived from the interference factor from small angle X-ray scattering, structurally reflects fibrillation degree. Interestingly, the minimal L obtained at low water content is close to the crystal thickness derived from wide angle X-ray scattering. For a series of refined pulp samples, significant regressions are established between Ls and equilibrium moisture content, transmittance (T%), surface energy components (γLW, γAB), and the normalized crystallinity index (CrIn). These regressions establish Ls as a unique structural parameter for quantifying the fibrillation degree and derived properties of refined pulps without the need of a multi-parameter and time-consuming analyses.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bröckel U, Meier W, Wagner G (2013) Product design and engineering: formulation of gels and pastes. Wiley-VCH, Heidelberg

    Book  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils. A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron (Oxford, England: 1993) 48:42–48

    Article  CAS  Google Scholar 

  • Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329

    Article  CAS  PubMed  Google Scholar 

  • Ebeling K (1980) A critical review of current theories for the refining of chemical pulps. Project 3384. Institute of Paper Chemistry, Appleton

    Google Scholar 

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4(3):339–345

    Article  Google Scholar 

  • Fall AB, Lindstrom SB, Sundman O, Odberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir ACS J Surf Colloids 27(18):11332–11338

    Article  CAS  Google Scholar 

  • Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21(6):3951–3963

    Article  CAS  Google Scholar 

  • Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York

    Book  Google Scholar 

  • Fleischfresser BE, Freeland GN (1976) Measurement of external specific surface area of fibers by solution adsorption. J Appl Polym Sci 20(12):3453–3456

    Article  CAS  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679

    Article  CAS  PubMed  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  • Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575

    Article  CAS  Google Scholar 

  • Glatter O, Kratky O (eds) (1982) Instrumentataion, experimental technique, slit collimation. In: Small angle X-ray scattering. Academic Press, London

  • Gu F, Wang W, Cai Z, Xue F, Jin Y, Zhu JY (2018) Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 25(5):2861–2871

    Article  CAS  Google Scholar 

  • Hartman RR (1984) Mechanical treatment of pulp fibers for property development. Doctoral thesis, Lawrence University

  • Hu C, Zhao Y, Li K, Zhu JY, Gleisner R (2015) Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69(8):993–1000

    CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76

    Article  CAS  Google Scholar 

  • Jarvis MC (2018) Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos Trans R Soc Lond A Math Phys Eng Sci 376(2112):20170045

    Article  CAS  Google Scholar 

  • Kang T (2007) Role of external fibrillation in pulp and paper properties. Doctoral Thesis, Helsinki University of Technology

  • Kang T, Paulapuro H (2006) New mechanical treatment for chemical pulp. Proc Inst Mech Eng Part E J Process Mech Eng 220(3):161–166

    Article  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Res 346(1):76–85

    Article  CAS  Google Scholar 

  • Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007a) Microfibril diameter in celery collenchyma cellulose. X-ray scattering and NMR evidence. Cellulose 14(3):235–246

    Article  CAS  Google Scholar 

  • Kennedy CJ, Šturcová A, Jarvis MC, Wess TJ (2007b) Hydration effects on spacing of primary-wall cellulose microfibrils. A small angle X-ray scattering study. Cellulose 14(5):401–408

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999

    Article  CAS  Google Scholar 

  • Liu W, Wang B, Hou Q, Chen W, Wu M (2016) Effects of fibrillation on the wood fibers’ enzymatic hydrolysis enhanced by mechanical refining. Bioresour Technol 206:99–103

    Article  CAS  PubMed  Google Scholar 

  • Luukkonen P, Maloney T, Rantanen J, Paulapuro H, Yliruusi J (2001) Microcrystalline cellulose-water interaction—a novel approach using thermoporosimetry. Pharm Res 18(11):1562–1569

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10(2):2360–2375

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2015) Concentration effect of TEMPO-oxidized nanofibrillated cellulose aqueous suspensions on the flow instabilities and small-angle X-ray scattering structural characterization. Cellulose 22(4):2197–2210

    Article  CAS  Google Scholar 

  • Page DH (ed) (1989) The beating of chemical pulps: the action and the effects. British Paper and Board Makers’ Assoc, London

    Google Scholar 

  • Penttila PA, Varnai A, Fernandez M, Kontro I, Liljestrom LP, Siila-aho M, Viikari L, Serimaa R (2013) Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrlysis. Cellulose 20:1031–1040

    Article  CAS  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327(9–10):873–880

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng Y (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5(77):63111–63122

    Article  CAS  Google Scholar 

  • Strobl GR (1970) A new method of evaluating slit-smeared small-angle X-ray scattering data. Acta Crystallogr Sect A: Found Crystallogr 26:367–375

    Article  Google Scholar 

  • Strobl GR (2007) The physics of polymers. Concepts for understanding their structures and behavior. Springer, Berlin

    Google Scholar 

  • Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238

    Article  CAS  Google Scholar 

  • Tanaka A (2012) Nanocellulose characterization with mechanical fractionation. Nordic Pulp Paper Res J 27(04):689–694

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589

    Article  CAS  Google Scholar 

  • Tanaka C, Yui Y, Isogai A (2015) TEMPO-mediated oxidation of cotton cellulose fabrics under weakly acidic or neutral conditions. Sen’i Gakkaishi 71(5):191–196

    Article  CAS  Google Scholar 

  • TAPPI (2001) Specific external surface of pulp. TAPPI(T 226). https://research.cnr.ncsu.edu/wpsanalytical/documents/T226.PDF

  • Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476

    Article  CAS  PubMed  Google Scholar 

  • Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC (2014) Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 21(6):3887–3895

    Article  CAS  Google Scholar 

  • Tsuchida JE, Rezende CA, de Oliveira-Silva R, Lima MA, d’Eurydice MN, Polikarpov I, Bonagamba TJ (2014) Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels 7(1):127

    PubMed  PubMed Central  Google Scholar 

  • Udomkichdecha W, Chiarakorn S, Potiyaraj P (2002) Relationships between fibrillation behavior of Lyocell fibers and their physical properties. Text Res J 72(11):939–943

    Article  CAS  Google Scholar 

  • van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941

    Article  Google Scholar 

  • Wang X, Maloney TC, Paulapuro H (2003) Fibre fibrillation and its impact on sheet properties. Paperi ja PUU-Paper and Timber 89(3):148–151

    Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang Y-HP, Ni Y, Luo XL, Zhu JY (2012a) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389

    Article  CAS  PubMed  Google Scholar 

  • Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012b) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by German Federation of Industrial Research Associations (AIF) (IGF 17939). Mr. Lutz Hamann from Papiertechnische Stiftung provided the original sulfite pulp and Ms. Mona Duhme and Mr. Sebastian Drabben from Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT provided the refined pulp fibers. Mrs. Elke Stibal performed the microscopic and nanofibril content analyses. Mr. Yoann Magre and Mr. Nicolas Renouard experimentally supported the measurements of secondary properties. Dr. Marcus Lindenfelder contributed to the statistical analyses. Their support is greatly appreciated. We would also like to thank Prof. Helga Lichtenegger from BOKU University of Natural Resources and Life Sciences for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 362 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Heck, B., Abushammala, H. et al. A structural fibrillation parameter from small angle X-ray scattering to quantify pulp refining. Cellulose 26, 4265–4277 (2019). https://doi.org/10.1007/s10570-019-02386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02386-0

Keywords

  • Small angle X-ray scattering (SAXS)
  • Pulp refining
  • Fibrillation degree
  • Interfibrillar distance
  • Interference factor
  • Crystallinity index