Skip to main content

Determining the lignin distribution in plant fiber cell walls based on chemical and biological methods

Abstract

Cellulosic fibers are widely used in biocomposites, paper and paperboard products, and other fiber-based materials. The properties of fiber-based materials are significantly affected by lignin characteristics, especially the lignin distribution in cellulosic fiber cell walls. In this study, chemical (sodium chlorite) and biological (laccase/mediator system) techniques were used to control three fiber models with different lignin contents at about 20%, 10%, 5%, respectively. The lignin distribution in cell walls was determined based on the “enzymatic peeling” method and SEM–EDS analysis. Results showed that the lignin concentrations in fiber cell walls prepared from the combined chemical and biological techniques were lower in the outer region and higher in the inner region than those from the chemical treatment only, which is due to the fact that laccase-induced lignin degradation is only limited to the outer region and not able to get into the inner region. The fiber model with less lignin in the inner region of the cell wall had a better deformation performance (the flexibility of 1.559 × 109 N−1 m−2) than that with more lignin in the same region. The relationships of fiber models of different specific lignin distribution with their deformability were established, which could be valuable to extend the wide value-added applications of fiber-based materials.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Acharjee TC, Jiang Z, Haynes RD, Lee YY (2017) Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass. Bioresour Technol 244(Pt 1):1049

    Article  CAS  PubMed  Google Scholar 

  • Aggerbrandt LG, Samuelsson O (1964) Penetration of water-soluble polymers into cellulose fibres. J Appl Polym Sci 8:2801–2812

    Article  Google Scholar 

  • Andreasson B (2003) The porous structure of pulp fibres with different yields and influence on paper strength. Cellulose 10:111–123

    Article  CAS  Google Scholar 

  • Berthold J, Salmén L (1997) Inverse size exclusion chromatography (ISEC) for determining the relative pore size distribution of wood pulps. Holzforschung 51(4):361–368

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519

    Article  CAS  Google Scholar 

  • Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz als Roh Werks 1:1–8

    Article  Google Scholar 

  • Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338

    Article  CAS  Google Scholar 

  • Clark J (1962) Effects of fiber coarseness and length, I. Bulk, burst, tears, fold and tensile tests. Tappi J 45:L628–L634

    Google Scholar 

  • Compton BG, Lewis JA (2015) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935

    Article  CAS  Google Scholar 

  • Crestini C, Perazzini R, Saladino R (2010) Oxidative functionalisation of lignin by layer-by-layer immobilised laccases and laccase microcapsules. Appl Catal A Gen 372(2):115–123

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4(3):339–345

    Article  Google Scholar 

  • Fatehi P, Xiao H (2010) Effect of cationic PVA characteristics on fiber and paper properties at saturation level of polymer adsorption. Carbohydr Polym 79(2):423–428

    Article  CAS  Google Scholar 

  • Fatehi P, Tutus A, Xiao H (2009) Cationic-modified PVA as a dry strength additive for rice straw fibers. Bioresour Technol 100(2):749–755

    Article  CAS  PubMed  Google Scholar 

  • Fatehi P, Kititerakun R, Ni Y, Xiao H (2010) Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr Polym 80(1):208–214

    Article  CAS  Google Scholar 

  • Fernández-Fernández M, Sanromán MÁ, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31(8):1808–1825

    Article  CAS  PubMed  Google Scholar 

  • Flores EIS, Neto EADS, Pearce C (2011) A large strain computational multi-scale model for the dissipative behaviour of wood cell-wall. Computat Mater Sci 50(3):1202–1211

    Article  Google Scholar 

  • Freshour G, Darvill AG, Albersheim P, Hahn MG (1996) An antibody fab selected from a recombinant phage display library detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells. Plant Cell 8(4):673

    PubMed  PubMed Central  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  • Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A 77:1–25

    Article  CAS  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61(4):343–351

    Article  CAS  Google Scholar 

  • Hu BL, Che Y, Yang Q, Liu DM, Huang WH (2003) Analyses on cryogenic nitrogen isothermal adsorption characteristics of coal reservoirs in the Ordos Basin, coal geology and exploration. Coal Geol Explor 31(2):20–23

    Google Scholar 

  • Jahan MS, Chowdhury DA, Islam MK (2006) Characterization and evaluation of golpata fronds as pulping raw materials. Bioresour Technol 97(3):401–406

    Article  CAS  PubMed  Google Scholar 

  • Jahan MS, Islam MK, Chowdhury DAN, Moeiz SMI, Arman U (2007) Pulping and papermaking properties of pati (typha). Ind Crop Prod 26(3):259–264

    Article  CAS  Google Scholar 

  • Jahan MS, Liu Z, Wang H, Saeed A, Ni Y (2012) Isolation and characterization of lignin from prehydrolysis liquor of kraft-based dissolving pulp production. Cell Chem Technol 46(3):261–267

    CAS  Google Scholar 

  • Jajcinovic M, Fischer WJ, Hirn U, Bauer W (2016) Strength of individual hardwood fibres and fibre to fibre joints. Cellulose 23(3):1–12

    Article  CAS  Google Scholar 

  • Ji Z, Ma JF, Zhang ZH, Xu F, Sun RC (2013) Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind Crop Prod 47(3): 212–217

    Article  CAS  Google Scholar 

  • Li K, Reeve DW (2002) The origins of kraft pulp fibre surface lignin. J Pulp Pap Sci 28(11):369–373

    CAS  Google Scholar 

  • Li J, Ma X, Duan C, Liu Y, Zhang H, Ni Y (2016a) Enhanced removal of hemicelluloses from cellulosic fibers by poly(ethylene glycol) during alkali treatment. Cellulose 23(1):231–238

    Article  CAS  Google Scholar 

  • Li Z, Zhang H, Wang X, Zhang F, Li X (2016b) Further understanding the response mechanism of lignin content to bonding properties of lignocellulosic fibers by their deformation behavior. RSC Adv 6(110):109211–109217

    Article  CAS  Google Scholar 

  • Liu H, Wu SH, Jiang XM (2005) Configuration analysis of the adsorption isotherm of nitrogen in low temperature with the lignite char produced under fast pyrolysis. J China Coal Soc 30(4):507–510

    Google Scholar 

  • Liu M, Baum A, Odermatt J, Berger J, Yu L, Zeuner B et al (2017) Oxidation of lignin in hemp fibres by laccase: effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Compos A 95:377–387

    Article  CAS  Google Scholar 

  • Lowe RM, Page DH, Waterhouse JF, Hsieh J, Cheluka N, Ragauskas AJ (2007) Deformation behavior of wet lignocellulosic fibers. Holzforschung 61(3):261–266

    Article  CAS  Google Scholar 

  • Ma J, Mao J, Xu F, Sun R (2010) Characterization of anatomy, ultrastructure and lignin microdistribution in Forsythia suspensa. Ind Crop Pro 33:358–363

    Article  CAS  Google Scholar 

  • Maloney TC (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25(12):430–436

    CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113

    Article  CAS  PubMed  Google Scholar 

  • Miao Q, Tian C, Chen L, Huang L, Zheng L, Ni Y (2015) Combined mechanical and enzymatic treatments for improving the Fock reactivity of hardwood kraft-based dissolving pulp. Cellulose 22:803–809

    Article  CAS  Google Scholar 

  • Moigne NL, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79(2):325–332

    Article  CAS  Google Scholar 

  • Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput Mater Sci 46(2):310–320

    Article  Google Scholar 

  • Qing H, Mishnaevsky L (2010) 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct 47(9):1253–1267

    Article  Google Scholar 

  • Ren GP, Zhang CQ, Jiang XM, Yu LJ (2007) Analysis of surface area and pore structure of Datong coal. J Combust Sci Technol 13(3):265–268

    CAS  Google Scholar 

  • Schmidt M, Schwartzberg AM, Perera PN, Weberbargioni A, Carroll A, Sarkar P et al (2009) Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa. Planta 230(3):589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Song Z, Qian X, Ni Y (2011) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50(2):661–666

    Article  CAS  Google Scholar 

  • Sjöberg J, Potthast A, Rosenau T, Kosma AP, Sixta H (2005) Cross-sectional analysis of the polysaccharide composition in cellulosic fiber materials by enzymatic peeling/high-performance capillary zone electrophoresis. Biomacromolecules 6(6):3146–3151

    Article  CAS  PubMed  Google Scholar 

  • Steadman R, Luner P (1985) The effect of wet fiber flexibility on sheet apparent density. In: Punton V (ed) Papermaking raw materials, transactions of the 8th fundamental research symposium, vol 1. Mechanical Engineering Publications Limits, London, pp 311–337

    Google Scholar 

  • Stone JE, Scallan AM (1968) The effect of component removal upon the porous structure of the cell wall of wood. Part III. A comparison between the sulphite and kraft processes. Pulp Pap Mag Can T288:69–74

    Google Scholar 

  • Yang TZ, Luo SZ, Xu YS (2006) Characterization of pore structure on N2 adsorption applied to porous materials. Carbon 1:17–22

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (NSFC Grant No. 31670588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xie, J., Zhang, H. et al. Determining the lignin distribution in plant fiber cell walls based on chemical and biological methods. Cellulose 26, 4241–4252 (2019). https://doi.org/10.1007/s10570-019-02384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02384-2

Keywords

  • Cellulosic fiber
  • Lignin distribution
  • Enzymatic peeling treatment
  • Laccase/mediator system
  • Flexibility