Abe K, Iwamoto S, Yano H (2007) obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. https://doi.org/10.1021/bm700624p
Article
CAS
PubMed
Google Scholar
Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69:2434–2437. https://doi.org/10.1016/j.compscitech.2009.06.015
Article
CAS
Google Scholar
Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005
Article
CAS
PubMed
Google Scholar
Ahuja D, Kaushik A, Singh M (2018) Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment. Int J Biol Macromol 107:1294–1301. https://doi.org/10.1016/j.ijbiomac.2017.09.107
Article
CAS
PubMed
Google Scholar
Amiralian N, Annamalai PK, Memmott P, Martin DJ (2015) Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498. https://doi.org/10.1007/s10570-015-0688-x
Article
Google Scholar
Bian H, Chen L, Dai H, Zhu JY (2017) Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose 24:4205–4216. https://doi.org/10.1007/s10570-017-1430-7
Article
CAS
Google Scholar
Bitra VSP, Womac AR, Igathinathane C, Miu PI, Yang YT, Smith DR, Chevanan N, Sokhansanj S (2009) Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover. Bioresour Technol 100:6578–6585. https://doi.org/10.1016/j.biortech.2009.07.069
Article
CAS
PubMed
Google Scholar
Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630. https://doi.org/10.1163/156855407782106519
Article
CAS
Google Scholar
Bootello MA, Garcés R (2015) Food uses of sunflower oils. Sunflower. https://doi.org/10.1016/B978-1-893997-94-3.50020-9
Article
Google Scholar
Brazdausks P, Puke M, Rizhikovs J, Pubule J (2017) Evaluation of cellulose content in hemp shives after salt catalyzed hydrolysis. Energy Proc 128:297–301. https://doi.org/10.1016/j.egypro.2017.08.316
Article
CAS
Google Scholar
Cantamutto M, Poverene M (2007) Genetically modified sunflower release: opportunities and risks. Field Crop Res 101:133–144
Article
Google Scholar
Cao S, Pu Y, Studer M, Wyman C, Ragauskas AJ (2012) Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv 2:10925. https://doi.org/10.1039/c2ra22045h
Article
CAS
Google Scholar
Carioca JOB, Vasconcelos GFC De, Abreu RFDA, Monteiro CTF (2005) Process of purification of cashew nut shell liquid (CNSL) for isolation of cardanol. 2nd Mercosur congress on chemical engineering
Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107. https://doi.org/10.1515/HF.2005.016
Article
CAS
Google Scholar
Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040
Article
CAS
Google Scholar
Chen C, Luo J, Qin W, Tong Z (2014) Elemental analysis, chemical composition, cellulose crystallinity, and FT-IR spectra of Toona sinensis wood. Monatshefte fur Chemie 145:175–185
Article
CAS
Google Scholar
de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. https://doi.org/10.1002/marc.200300268
Article
CAS
Google Scholar
Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0
Article
CAS
Google Scholar
Ewulonu CM, Xuran LIU, Min WU, Huang Y (2019) Lignin-containing cellulose nanomaterials: a promising new nanomaterial for numerous applications. J Bioresour Bioprod 1:3–10. https://doi.org/10.21967/jbb.v4i1.186
CAS
Article
Google Scholar
Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. https://doi.org/10.1007/s10570-010-9436-4
Article
CAS
Google Scholar
Flynn CN, Byrne CP, Meenan BJ (2013) Surface modification of cellulose via atmospheric pressure plasma processing in air and ammonia–nitrogen gas. Surf Coat Technol 233:108–118. https://doi.org/10.1016/j.surfcoat.2013.04.007
Article
CAS
Google Scholar
Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. https://doi.org/10.1021/bm801065u
Article
CAS
PubMed
Google Scholar
Herrera M, Thitiwutthisakul K, Yang X, Rujitanaroj P, Rojas R, Berglund L (2018) Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose 25:3121–3133. https://doi.org/10.1007/s10570-018-1764-9
Article
CAS
Google Scholar
Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322. https://doi.org/10.1002/cssc.201200492
Article
CAS
PubMed
Google Scholar
Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759. https://doi.org/10.1039/C5NR08179C
Article
CAS
PubMed
Google Scholar
Inturrisi L (2015) Asia and Australia perspectives on sunflower production and processing. Sunflower. https://doi.org/10.1016/B978-1-893997-94-3.50026-X
Article
Google Scholar
Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85
Article
CAS
PubMed
Google Scholar
Jiang F, Lo HY (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. https://doi.org/10.1016/j.carbpol.2013.02.022
Article
CAS
PubMed
Google Scholar
Jiang T, Guo Z, Liu W (2015) Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A 3:1811–1827. https://doi.org/10.1039/C4TA05582A
Article
CAS
Google Scholar
Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335. https://doi.org/10.1016/j.carbpol.2016.01.048
Article
CAS
PubMed
Google Scholar
Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85. https://doi.org/10.1016/j.carres.2010.10.020
Article
CAS
PubMed
Google Scholar
Khawas P, Jyoti Das A, Chandra Deka S (2016) Production of renewable cellulose nanopaper from culinary banana (Musa ABB) peel and its characterization. Ind Crops Prod 86:102–112. https://doi.org/10.1016/j.indcrop.2016.03.028
Article
CAS
Google Scholar
Kim DY, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33. https://doi.org/10.1023/A:1016621103245
Article
CAS
Google Scholar
Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587
Article
CAS
Google Scholar
Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostructured Mater 9:13–22. https://doi.org/10.1016/S0965-9773(97)00014-7
Article
CAS
Google Scholar
Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9
Article
PubMed
PubMed Central
Google Scholar
Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crop Prod 104:179–187. https://doi.org/10.1016/j.indcrop.2017.04.044
Article
CAS
Google Scholar
Lee SY, Chun SJ, Kang IA, Park JY (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55. https://doi.org/10.1016/j.jiec.2008.07.008
Article
CAS
Google Scholar
Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211
Article
CAS
Google Scholar
Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99. https://doi.org/10.1016/j.carbpol.2008.09.034
Article
CAS
Google Scholar
Li MF, Fan YM, Xu F, Sun RC (2011) Structure and thermal stability of polysaccharide fractions extracted from the ultrasonic irradiated and cold alkali pretreated bamboo. J Appl Polym Sci 121:176–185. https://doi.org/10.1002/app.33491
Article
CAS
Google Scholar
Li Y, Liu Y, Chen W, QingwenWang YL, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillatio. Green Chem 18:869–1160
Article
Google Scholar
Li X, Li J, Gong J, Kuang Y, Mo L, Song T (2018) Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydr Polym 183:303–310. https://doi.org/10.1016/j.carbpol.2017.12.085
Article
CAS
PubMed
Google Scholar
Liu TY, Ma Y, Yu SF, Shi J, Xue S (2011) The effect of ball milling treatment on structure and porosity of maize starch granule. Innov Food Sci Emerg Technol 12:586–593. https://doi.org/10.1016/j.ifset.2011.06.009
Article
CAS
Google Scholar
Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724. https://doi.org/10.1016/j.carbpol.2016.06.025
Article
CAS
PubMed
Google Scholar
Liu Q, Lu Y, Aguedo M, Jacquet N, Ouyang C, He W, Yan C, Bai W, Guo R, Goffin D, Song J, Richel A (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5:6183–6191. https://doi.org/10.1021/acssuschemeng.7b01108
Article
CAS
Google Scholar
Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172. https://doi.org/10.1021/acssuschemeng.5b01620
Article
CAS
Google Scholar
Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030
Article
CAS
Google Scholar
Meng F, Wang G, Du X, Wang Z, Xu S, Zhang Y (2018) Accepted manuscript preparation and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2018.08.048
Article
Google Scholar
Missoum K, Belgacem MN, Barnes J-P, Brochier-Salon M-C, Bras J (2012) Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter 8:8338. https://doi.org/10.1039/c2sm25691f
Article
CAS
Google Scholar
Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634. https://doi.org/10.1016/j.carbpol.2013.01.035
Article
CAS
PubMed
Google Scholar
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3994
Article
CAS
Google Scholar
Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9
Article
CAS
Google Scholar
Nagarajan V, Mohanty AK, Misra M (2013) Sustainable green composites: value addition to agricultural residues and perennial grasses. ACS Sustain Chem Eng. https://doi.org/10.1021/sc300084z
Article
Google Scholar
Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137–3150. https://doi.org/10.1007/s10570-015-0737-5
Article
CAS
Google Scholar
Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324. https://doi.org/10.1002/app.1964.070080322
Article
CAS
Google Scholar
Niu F, Li M, Huang Q, Zhang X, Pan W, Yang J, Li J (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr Polym 165:197–204. https://doi.org/10.1016/j.carbpol.2017.02.048
Article
CAS
PubMed
Google Scholar
Peng P, She D (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr Polym 112:701–720. https://doi.org/10.1016/j.carbpol.2014.06.068
Article
CAS
PubMed
Google Scholar
Poletto M, Zattera AJ, Santana RMC (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol 126:7–12. https://doi.org/10.1016/j.biortech.2012.08.133
Article
CAS
PubMed
Google Scholar
Popa VI, Cǎpraru AM, Grama S, Mǎluţan T (2011) Nanoparticles based on modified lignins with biocide properties. Cellul Chem Technol 45:221–226
CAS
Google Scholar
Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willför S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857. https://doi.org/10.1016/j.carbpol.2009.03.011
Article
CAS
Google Scholar
Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:1–13. https://doi.org/10.1186/1754-6834-6-15
Article
CAS
Google Scholar
Pu Y, Hu F, Huang F, Ragauskas AJ (2015) Lignin structural alterations in thermochemical pretreatments with limited delignification. Bioenergy Res 8:992–1003. https://doi.org/10.1007/s12155-015-9655-5
Article
CAS
Google Scholar
Raj P, Mayahi A, Lahtinen P, Varanasi S, Garnier G, Martin D, Batchelor W (2016) Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy. Cellulose 23:3051–3064. https://doi.org/10.1007/s10570-016-1039-2
Article
CAS
Google Scholar
Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2010) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242. https://doi.org/10.1007/s00226-009-0281-2
Article
CAS
Google Scholar
Rangan A, Manchiganti MV, Thilaividankan RM, Kestur SG, Menon R (2017) Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers. Ind Crops Prod 103:152–160. https://doi.org/10.1016/j.indcrop.2017.03.037
Article
CAS
Google Scholar
Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134. https://doi.org/10.1007/s10570-010-9474-y
Article
CAS
Google Scholar
Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/C4GC02398F
Article
CAS
Google Scholar
Roman M, Winter WT (2004) Effect of sulphate groups from sulphuric acid hydrolysis on the thermal degradation behaviour of bacterial cellulose. Biomacromolecules. https://doi.org/10.1021/BM034519+
Article
PubMed
Google Scholar
Rosa MFF, Medeiros ESS, Malmonge JAA, Gregorski KSS, Wood DFF, Mattoso LHCHC, Glenn G, Orts WJJ, Imam SHH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059
Article
CAS
Google Scholar
Sánchez R, Espinosa E, Domínguez-Robles J, Loaiza JM, Rodríguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033. https://doi.org/10.1016/j.ijbiomac.2016.08.019
Article
CAS
PubMed
Google Scholar
Sánchez-Muniz FJ, Bastida S, Benedí J (2016) Sunflower oil. Encycl Food Heal. https://doi.org/10.1016/B978-0-12-384947-2.00674-7
Article
Google Scholar
Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382. https://doi.org/10.1007/s10570-013-0110-5
Article
CAS
Google Scholar
Seiler GJ, Gulya TJ (2016) Sunflower: overview. Ref Modul Food Sci. https://doi.org/10.1016/B978-0-08-100596-5.00027-5
Article
Google Scholar
Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2012) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483. https://doi.org/10.1515/hf.2011.183
Article
CAS
Google Scholar
Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. https://doi.org/10.1007/s10570-011-9533-z
Article
CAS
Google Scholar
Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2014) A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng 2:472–485. https://doi.org/10.1021/sc400384w
Article
CAS
Google Scholar
Tarrés Q, Ehman NV, Vallejos ME, Area MC, Delgado-Aguilar M, Mutjé P (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27. https://doi.org/10.1016/j.carbpol.2017.01.017
Article
CAS
PubMed
Google Scholar
Tholstrup Sejersen M, Salomonsen T, Ipsen R, Clark R, Rolin C, Balling Engelsen S (2007) Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int Dairy J 17:302–307. https://doi.org/10.1016/j.idairyj.2006.03.003
Article
CAS
Google Scholar
Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci Technol 59:1311–1318. https://doi.org/10.1016/j.lwt.2014.04.011
Article
CAS
Google Scholar
Tranvan L, Legrand V, Jacquemin F (2014) Thermal decomposition kinetics of balsa wood: kinetics and degradation mechanisms comparison between dry and moisturized materials. Polym Degrad Stabil 110:208–215. https://doi.org/10.1016/j.polymdegradstab.2014.09.004
Article
CAS
Google Scholar
Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer (Guildf) 48:3486–3493. https://doi.org/10.1016/j.polymer.2007.03.062
Article
CAS
Google Scholar
Wang C, Zhao M, Huang P, Rao X, Wu M, Huang Y (2017) Influence of medium polarity and mechanical force on morphology and structure of nanocellulose. Acta Polym Sin 9:1415–1425. https://doi.org/10.11777/j.issn100-3304.2017.17080
Article
Google Scholar
Wei L, Agarwal UP, Matuana L, Sabo RC, Stark NM (2018) Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polym (UK) 135:305–313. https://doi.org/10.1016/j.polymer.2017.12.039
Article
CAS
Google Scholar
Xie J, Hse C-Y, De Hoop CF, Hu T, Qi J, Shupe TF (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydr Polym 151:725–734. https://doi.org/10.1016/j.carbpol.2016.06.011
Article
CAS
PubMed
Google Scholar
Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20:388–393. https://doi.org/10.1021/ef0580117
Article
CAS
Google Scholar
Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
Article
CAS
Google Scholar
Zhang H, Pang H, Shi J, Fu T, Liao B (2012) Investigation of liquefied wood residues based on cellulose, hemicellulose, and lignin. J Appl Polym Sci 123:850–856. https://doi.org/10.1002/app.34521
Article
CAS
Google Scholar
Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22:1729–1741. https://doi.org/10.1007/s10570-015-0582-6
Article
CAS
Google Scholar
Zhang L, Liu Y, Hao L (2016) Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/1/014014
Article
Google Scholar
Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225
Article
CAS
PubMed
Google Scholar
Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592. https://doi.org/10.1007/s10570-007-9118-z
Article
CAS
Google Scholar
Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59. https://doi.org/10.1016/j.carbpol.2008.09.024
Article
CAS
Google Scholar