Skip to main content

Cellulose non-woven fabric-derived porous carbon films as binder-free electrodes for supercapacitors

Abstract

In this study, porous carbon films with a high specific surface area and excellent electrical conductivity were prepared from cheap cellulose non-woven fabrics (CNWFs) for high-performance supercapacitors. CNWFs were stabilized under the optimized conditions and then carbonized at various temperatures under inert atmosphere, resulting in carbonized CNWFs (C-CNWFs) with a high specific area without any activation process and a low surface resistance. The specific surface area and electrochemical properties of the C-CNWFs were found to be strongly dependent on the carbonization temperature. In particular, the C-CNWFs prepared at 1000 °C showed superior electrochemical performance in a KOH aqueous electrolyte, including a high specific capacitance of ~ 240 F g−1 at a current density of 1 A g−1, and a good capacitance retention of 99.7%. This excellent performance demonstrates the potential for the application of C-CNWFs as an electrode material in high-performance supercapacitors.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Bai Q, Xiong Q, Li C, Shen Y, Uyama H (2017) Hierarchical porous carbons from poly(methyl methacrylate)/bacterial cellulose composite monolith for high-performance supercapacitor electrodes. ACS Sustain Chem Eng 5:9390–9401

    Article  CAS  Google Scholar 

  • Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252

    Article  CAS  PubMed  Google Scholar 

  • Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  CAS  Google Scholar 

  • Byrne N, De Silva R, Ma Y, Sixta H, Hummel M (2018) Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 25:723–733

    Article  CAS  Google Scholar 

  • Cai J, Niu H, Wang H, Shao H, Fang J, He J, Xiong H, Ma C, Lin T (2016) High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. J Power Sources 324:302–308

    Article  CAS  Google Scholar 

  • Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111

    Article  CAS  Google Scholar 

  • Chen Z, Peng X, Zhang X, Jing S, Zhong L, Sun R (2017) Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application. Carbohydr Polym 170:107–116

    Article  CAS  PubMed  Google Scholar 

  • Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energy Rev 38:594–608

    Article  CAS  Google Scholar 

  • Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013a) Carbon nanofibres produced from electrospun cellulose nanofibers. Carbon 58:66–75

    Article  CAS  Google Scholar 

  • Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del Rio DA, Eichhorn SJ (2013b) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces 5:9983–9990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Zhang HP, Li X, Tang Y, Yang G (2018) Crosslinked carbon nanofiber films with hierarchical pores as flexible electrodes for high performance supercapacitors. Mater Des 141:17–25

    Article  CAS  Google Scholar 

  • Dumanli AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250

    Article  CAS  Google Scholar 

  • Fan L, Yang L, Ni X, Han J, Guo R, Zhang C (2016) Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 107:629–637

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Haensel T, Comouth A, Lorenz P, Ahmed SIU, Krischok S, Zydziak N, Kauffmann A, Schaefer JA (2009) Pyrolysis of cellulose and lignin. Appl Surf Sci 225:8183–8189

    Article  CAS  Google Scholar 

  • Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    Article  CAS  PubMed  Google Scholar 

  • Heise HM, Kuckuk R, Ojha AK, Srivastava A, Srivastava V, Asthana B (2009) Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353

    Article  CAS  Google Scholar 

  • Hu Y, Tong X, Zhuo H, Zhong L, Peng X, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrode and CO2 adsorption. RSC Adv 6:15788–15795

    Article  CAS  Google Scholar 

  • Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  • Jiang L, Nelson GW, Kim H, Sim IN, Han SO, Foord JS (2015) Cellulose-derived supercapacitors from the carbonisation of filter paper. ChemistryOpen 4:586–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Nelson GW, Han SO, Kim H, Sim IN, Foord JS (2016) Natural cellulose materials for supercapacitors. Electrochim Acta 192:251–258

    Article  CAS  Google Scholar 

  • Jung CH, Kim WJ, Jung CH, Hwang IT, Khim D, Kim DY, Lee JS, Ku BC, Choi JH (2015) A simple PAN-based fabrication method for microstructured carbon electrodes for organic field-effect transistors. Carbon 87:257–268

    Article  CAS  Google Scholar 

  • Kim DY, Lee BM, Koo DH, Kang PH, Jeun JP (2016) Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose 23:3039–3049

    Article  CAS  Google Scholar 

  • Kim HJ, Lee CM, Dazen K, Delhom CD, Liu Y, Rodgers JE, French AD, Kim SH (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401

    Article  CAS  Google Scholar 

  • Lee BM, Jeun JP, Kang PH, Choi JH, Hong SK (2017a) Isolation and characterization of nanocrystalline cellulose from different precursor materials. Fiber Polym 18:272–277

    Article  CAS  Google Scholar 

  • Lee JY, Jung JM, Kim DY, Lee YS, Jung CH, Shin K, Choi JH (2017b) Preparation of conductive carbon films from poly(vinyl alcohol) by chemical pre-treatment and heat treatment. J Nanosci Nanotechnol 17:5184–5481

    Google Scholar 

  • Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction pattern of graphite and turbostratic carbon. Carbon 45:1686–1695

    Article  CAS  Google Scholar 

  • Li Z, Lv W, Zhang C, Li B, Kang F, Yang QH (2015) A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92:11–14

    Article  CAS  Google Scholar 

  • Li Y, Hu YS, Titirici MM, Li C, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659

    Article  CAS  Google Scholar 

  • Lia X, Zhou J, Xing W, Subhan F, Zhang Y, Bai P, Xu B, Zhuo S, Xue Q, Yan Z (2016) Outstanding capacitive performance of reticular porous carbon/graphene sheets with superhigh surface area. Electrochim Acta 190:923–931

    Article  CAS  Google Scholar 

  • Lin T, Chen IW, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513

    Article  CAS  Google Scholar 

  • Liu WW, Feng YQ, Yan XB, Chen JT, Xue QJ (2013) Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater 23:4111–4122

    Article  CAS  Google Scholar 

  • McGrath TE, Chan WG, Hajaligol MR (2003) Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J Anal Appl Pyrolysis 66:51–70

    Article  CAS  Google Scholar 

  • Nasri-Nasrabadi B, Kaynak A, Nia ZK, Kouzani A (2018) Cyclic cryogelation: a novel approach to control the distribution of carbonized cellulose fibres within polymer hydrogels. Cellulose 25:549–558

    Article  CAS  Google Scholar 

  • Rhim YR, Zhang D, Fairbrother DH, Wepasnick KA, Livi KJ, Bodnar RJ, Nagle DC (2010) Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon 48:1012–1024

    Article  CAS  Google Scholar 

  • Samuel E, Joshi B, Jo HS, Kim YI, An S, Swihart MT, Yun JM, Kim KH, Yoon SS (2017) Carbon nanofibers decorated with FeOx nanoparticles as a flexible electrode material for symmetric supercapacitors. Chem Eng J 328:776–784

    Article  CAS  Google Scholar 

  • Scalia A, Bella F, Lamberti A, Bianco S, Gerbaldi C, Tresso E, Pirri CF (2017) A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J Power Sources 359:311–321

    Article  CAS  Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  • Smith M, Scudiero L, Espinal J, McEwen SJ, Garcia-Perez M (2016) Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 110:155–171

    Article  CAS  Google Scholar 

  • Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Zhu S, Peng J, Zuo Y, Wang G, Guo X, Zhao N, Ma Y, Ma L (2017) Synthesis of micro- and meso-porous carbon derived from cellulose as an electrode material for supercapacitors. Electrochim Acta 241:170–178

    Article  CAS  Google Scholar 

  • Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762

    Article  CAS  Google Scholar 

  • Xiong S, Fan J, Wang Y, Zhu J, Yu J, Hu Z (2017) A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. J Mater Chem A 5:18242–18252

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang Y, Mu X, Du J, Wang H, Huang B, Zhou J, Pan X, Xie E (2017) The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths. Electrochim Acta 242:100–106

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  • Zhuo H, Hu J, Tong X, Zhong L, Peng X, Sun R (2016) Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind Crop Prod 87:229–235

    Article  CAS  Google Scholar 

  • Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20164010201070) and the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT, No. 2015M2A2A6A01043822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Hak Choi or Je Moon Yun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 803 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, BM., Eom, JJ., Baek, G.Y. et al. Cellulose non-woven fabric-derived porous carbon films as binder-free electrodes for supercapacitors. Cellulose 26, 4529–4540 (2019). https://doi.org/10.1007/s10570-019-02380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02380-6

Keywords

  • Cellulose non-woven fabrics
  • Stabilization
  • Carbonization
  • Supercapacitor
  • Electrode