Skip to main content

Surface modified cellulose nanocrystals for tailoring interfacial miscibility and microphase separation of polymer nanocomposites

Abstract

High performance nanocomposites with good interfacial miscibility and phase separated morphology have received a lot of attention. In this work, cellulose nanocrystals (CNCs) were first grafted with hydrophobic poly(methyl methacrylate) (PMMA) chains to produce modified CNCs (PMCNCs) with increased thermal stability. Such surface-tailored CNCs effectively influenced the phase morphology and improved the mechanical properties of poly(butyl acrylate-co-MMA) (PBA-co-PMMA) nanocomposites. Morphological analysis indicated the presence of microphase separation in PMCNCs/PBA-co-PMMA nanocomposites with PBA as the soft domain and PMMA as well as CNCs as the hard domain. The nanocomposites with 10 wt% PMCNCs/PBA-co-PMMA showed increases in Young’s modulus of more than 20-fold and in tensile strength of about 3-fold compared to those of the unmodified PBA-co-PMMA copolymer. Therefore, the PMCNCs played a crucial role in controlling the interfacial miscibility and tuning the phase morphology of the nanocomposites. It is also essential to understand the role played by microphase separation in achieving nano-scaled morphological control and in fine-tuning the resultant composite properties.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystal fillers in an acrylic polymer matrix. Macromol Symp 221:95–104

    Article  CAS  Google Scholar 

  • Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nano-crystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  CAS  Google Scholar 

  • Boujemaoui A, Mongkhontreerat S, Malmström E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464

    Article  CAS  PubMed  Google Scholar 

  • Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromol 8:899–904

    Article  CAS  Google Scholar 

  • Cao LM, Fu XF, Xu CH, Yin SH, Chen YK (2017) High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose). Cellulose 24:2849–2860

    Article  CAS  Google Scholar 

  • Chen YL, Kushner AM, Williams GA, Guan ZB (2012) Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem 4:467–472

    Article  CAS  PubMed  Google Scholar 

  • Dastjerdi Z, Cranston ED, Dubé MA (2017) Synthesis of poly(n-butyl acrylate/methyl methacrylate)/CNC latex nanocomposites via in situ emulsion polymerization. Macromol React Eng. https://doi.org/10.1002/mren.201700013

    Article  Google Scholar 

  • Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36–42

    Article  CAS  Google Scholar 

  • Dufour B, Koynov K, Pakula T, Matyjaszewski K (2008) PBA-PMMA 3-arm star block copolymer thermoplastic elastomers. Macromol Chem Phys 209:1686–1693

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaillé JY, Helbert W (1996) New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29:7624–7626

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaillé JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210

    Article  CAS  Google Scholar 

  • Eagan JM, Xu J, Girolamo RD, Thurber CM, Macosko CW, Lapointe AM, Bates FS, Coates GW (2017) Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355:814–816

    Article  CAS  PubMed  Google Scholar 

  • Elmabrouk AB, Wim T, Dufresne A, Boufi S (2009) Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polym Sci 114:2946–2955

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  • Habibi Y, Aouadi S, Raquez JM, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885

    Article  CAS  Google Scholar 

  • Helbert W, Cavaillé JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Hemraz UD, Campbell KA, Burdick JS, Ckless K, Boluk Y, Sunasee R (2015) Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromol 16:319–325

    Article  CAS  Google Scholar 

  • Huang YC, Zheng Y, Sarkar A, Xu YM, Stefik M, Benicewicz BC (2017) Matrix-free polymer nanocomposite thermoplastic elastomers. Macromolecules 50:4742–4753

    Article  CAS  Google Scholar 

  • Ilčíková M, Mrlík M, Sedláček T, Šlouf M, Zhigunov A, Koynov K, Mosnáček J (2014) Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett 3:999–1003

    Article  CAS  Google Scholar 

  • Isono T, Otsuka I, Suemasa D, Rochas C, Satoh T, Borsali R, Kakuchi T (2013) Synthesis, self-assembly, and thermal caramelization of maltoheptaose-conjugated polycaprolactones leading to spherical, cylindrical, and lamellar morphologies. Macromolecules 46:8932–8940

    Article  CAS  Google Scholar 

  • Isono T, Ree BJ, Tajima K, Borsali R, Satoh T (2018) Highly ordered cylinder morphologies with 10 nm scale periodicity in biomass-based block copolymers. Macromolecules 51:428–437

    Article  CAS  Google Scholar 

  • Jiang F, Wang ZK, Qiao YL, Wang ZG, Tang CB (2013) A novel architecture toward third- generation thermoplastic elastomers by a grafting strategy. Macromolecules 46:4772–4780

    Article  CAS  Google Scholar 

  • Kanoth BP, Claudino M, Johansson M, Berglund LA, Zhou Q (2015) Biocomposites from natural rubber: synergistic effects of functionalized cellulose nanocrystals as both reinforcing and cross-linking agents via free-radical thiol-ene chemistry. ACS Appl Mater Interfaces 7:16303–16310

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, Gałeski A (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2018.07.008

    Article  Google Scholar 

  • Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromol 14:2063–2073

    Article  CAS  Google Scholar 

  • Lu Y, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Wang YY, Wang WY, Cheng SW, Zhu JH, Xu KL, Kang NG, Mays J (2017) All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties. Polym Chem 8:5741–5748

    Article  CAS  Google Scholar 

  • Lu W, Goodwin A, Wang YY, Yin PC, Wang WY, Zhu JH, Wu T, Lu XY, Hu B, Hong KL, Kang NG, Mays J (2018) All-acrylic superelastomers: facile synthesis and exceptional mechanical behavior. Polym Chem 9:160–168

    Article  CAS  Google Scholar 

  • Mabrouk AB, Kaddami H, Magnin A, Belgacem MN, Boufi ADS (2011) Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: effect of the silane content. Polym Eng Sci 51:62–70

    Article  CAS  Google Scholar 

  • Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hydid nanomaterials. Biomacromol 10:497–504

    Article  CAS  Google Scholar 

  • Marais A, Kochumalayil JJ, Nilsson C, Fogelström L, Gamstedt EK (2012) Toward an alternative compatibilizer for PLA/cellulose composites: grafting of xyloglucan with PLA. Carbohydr Polym 89:1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Pol Phys 152:791–806

    Article  CAS  Google Scholar 

  • Mi HY, Jing X, Peng J, Salick MR, Peng XF, Turng LS (2014) Poly(ɛ-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 21:2727–2741

    Article  CAS  Google Scholar 

  • Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Morandi G, Thielemans W (2012) Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP. Polym Chem 3:1402–1407

    Article  CAS  Google Scholar 

  • Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux JL, Otaguro H, Pasquini D, Dufresne A (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152

    Article  CAS  Google Scholar 

  • Panganiban B, Qiao BF, Jiang T, DelRe C, Obadia MM, Nguyen TD, Smith AAA, Hall A, Sit I, Crosby MG, Dennis PB, Drockenmuller E, de la Cruz MO, Xu T (2018) Random heteropolymers preserve protein function in foreign environments. Science 359:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Phua SL, Yang LP, Toh CL, Huang S, Tsakadze Z, Lau SK, Mai YW, Lu XH (2012) Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. ACS Appl Mater Interfaces 4:4571–4578

    Article  CAS  PubMed  Google Scholar 

  • Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935

    Article  CAS  Google Scholar 

  • Rosilo H, Kontturi E, Seitsonen J, Kolehmainen E, Ikkala O (2013) Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Biomacromol 14:1547–1554

    Article  CAS  Google Scholar 

  • Sakakibara K, Yano H, Tsujii Y (2016) Surface engineering of cellulose nanofiber by adsorption of diblock copolymer dispersant for green nanocomposite materials. ACS Appl Mater Interfaces 8:24893–24900

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara K, Moriki Y, Yano H, Tsujii Y (2017) Strategy for the improvement of the mechanical properties of cellulose nanofiber-reinforced high-density polyethylene nanocomposites using diblock copolymer dispersants. ACS Appl Mater Interfaces 9:44079–44087

    Article  CAS  PubMed  Google Scholar 

  • Shamsabadi MK, Moghbeli MR (2017) Cellulose nanocrystals (CNCs) reinforced acrylic pressure-sensitive adhesives (PSAs) prepared via miniemulsion polymerization. Int J Adhes Adhes 78:155–166

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Souto-Maior RM, Tavares MIB, Monteiro EEC (2005) Solid state 13C NMR study of methyl methacrylate–methacrylic acid copolymers. Ann Magn Reson 4:69–72

    Google Scholar 

  • Spontak RJ, Patel NP (2000) Thermoplastic elastomers: fundamentals and applications. Curr Opin Colloid Interface Sci 5:333–340

    Article  Google Scholar 

  • Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Pinto JJCC, Gandini A (2010) Novel bacterial cellulose–acrylic resin nanocomposites. Compos Sci Technol 70:1148–1153

    Article  CAS  Google Scholar 

  • Vatankhah-Varnosfaderani M, Daniel WFM, Everhart MH, Pandya AA, Liang H, Matyjaszewski K, Dobrynin AV, Sheiko SS (2017) Mimicking biological stress–strain behaviour with synthetic elastomers. Nature 549:497–501

    Article  CAS  PubMed  Google Scholar 

  • Vatankhah-Varnosfaderani M, Keith AN, Cong Y, Liang H, Rosenthal M, Sztucki M, Clair C, Magonov S, Ivanov DA, Dobrynin AV, Sheiko SS (2018) Chameleon-like elastomers with molecularly encoded strain–adaptive stiffening and coloration. Science 359:1509–1513

    Article  CAS  PubMed  Google Scholar 

  • Vatansever A, Dogan H, Inan T, Sezer S, Sirkecioglu A (2015) Properties of Na-montmorillonite and cellulose nanocrystal reinforced poly(butyl acrylate-co-methyl methacrylate) nanocomposites. Polym Eng Sci 55:2922–2928

    Article  CAS  Google Scholar 

  • Wang HD, Roeder RD, Whitney RA, Champagne P, Cunningham MF (2015a) Graft modification of crystalline nanocellulose by Cu(0)-mediated SET living radical polymerization. J Polym Sci A Polym Chem 53:2800–2808

    Article  CAS  Google Scholar 

  • Wang ZK, Jiang F, Zhang YQ, You YZ, Wang ZG, Guan ZB (2015b) Bioinspired design of nanostructured elastomers with cross-linked soft matrix grafting on the oriented rigid nanofibers to mimic mechanical properties of human skin. ACS Nano 9:271–278

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837

    Article  CAS  Google Scholar 

  • Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    Article  CAS  Google Scholar 

  • Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Tanaka S, Yamamoto T, Tajima K, Borsali R, Isono T, Satoh T (2018) Chain-end functionalization with a saccharide for 10 nm microphase separation: “classical” PS-b-PMMA versus PS-b-PMMA saccharide. Macromolecules. https://doi.org/10.1021/acs.macromol.8b02069

    Article  Google Scholar 

  • Yu J, Wang JF, Wang CP, Liu YP, Xu YZ, Tang CB, Chu FX (2015) UV-absorbent lignin-based multi-arm star thermoplastic elastomers. Macromol Rapid Commun 36:398–404

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang CP, Wang JF, Chu FX (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohydr Polym 141:143–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Chen HX, Zhou Y, Ke CM, Lu HZ (2013) Compatibility of waste rubber powder/polystyrene blends by the addition of styrene grafted styrene butadiene rubber copolymer: effect on morphology and properties. Polym Bull 70:2829–2841

    Article  CAS  Google Scholar 

  • Zhang ZY, Zhang QK, Shen ZH, Yu JP, Wu YX, Fan XH (2016) Synthesis and characterization of new liquid crystalline thermoplastic elastomers containing mesogen-jacketed liquid crystalline polymers. Macromolecules 49:475–482

    Article  CAS  Google Scholar 

  • Zhang JL, Wu QL, Li MC, Song KL, Sun XX, Lee SY, Lei TZ (2017) Thermoresponsive copolymer poly(N-Vinylcaprolactam) grafted cellulose nanocrystals: synthesis, structure, and properties. ACS Sustain Chem Eng 5:7439–7447

    Article  CAS  Google Scholar 

  • Zhao B, Zhu L (2006) Nanoscale phase separation in mixed poly(tert-butyl acrylate)/polystyrene brushes on silica nanoparticles under equilibrium melt conditions. J Am Chem Soc 128:4574–4575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is carried out with financial supports from US Endowment and USDA Forest Service [E17-23], Louisiana Board of Regents [LEQSF(2017-18)-RD-A-01, LEQSF(2018-19)-ENH-DE-06], LSU LIFT program, and cooperative projects from National Institute of Forest Research, Seoul, Korea and Key Biomass Energy Laboratory of Henan Province, Zhengzhou, China (Project No: 18TP06007 and 18JK1007) with the LSU AgCenter. We also appreciate the help (solvent purification system) from Dr. Donghui Zhang’s group (Department of Chemistry, LSU). Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingzhou Lei or Qinglin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 678 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, MC., Zhang, X. et al. Surface modified cellulose nanocrystals for tailoring interfacial miscibility and microphase separation of polymer nanocomposites. Cellulose 26, 4301–4312 (2019). https://doi.org/10.1007/s10570-019-02379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02379-z

Keywords

  • Cellulose nanocrystals
  • Nanocomposites
  • Micro-phase separation
  • Miscibility
  • Mechanical performance