Abdul Bashid HA et al (2017) Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for supercapacitor. Nanoscale Res Lett 12:246. https://doi.org/10.1186/s11671-017-2010-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Alcaraz-Espinoza JJ, de Melo CP, de Oliveira HP (2017) Fabrication of highly flexible hierarchical polypyrrole/carbon nanotube on eggshell membranes for supercapacitors. ACS Omega 2:2866–2877. https://doi.org/10.1021/acsomega.7b00329
Article
CAS
PubMed
PubMed Central
Google Scholar
Canobre SC, Xavier FFS, Fagundes WS, de Freitas AC, Amaral FA (2015) Performance of the chemical and electrochemical composites of PPy/CNT as electrodes in type I supercapacitors. J Nanomater 2015:13. https://doi.org/10.1155/2015/560164
Article
CAS
Google Scholar
Chami Khazraji A, Robert S (2013) Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. J Nanomater 2013:12. https://doi.org/10.1155/2013/745979
CAS
Article
Google Scholar
Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127. https://doi.org/10.1016/j.carbpol.2010.04.033
Article
CAS
Google Scholar
Chen Y, Du L, Yang P, Sun P, Yu X, Mai W (2015a) Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources 287:68–74
Article
CAS
Google Scholar
Chen Y, Du L, Yang P, Sun P, Yu X, Mai W (2015b) Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources 287:68–74. https://doi.org/10.1016/j.jpowsour.2015.04.026
Article
CAS
Google Scholar
Chen C et al (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10:538–545. https://doi.org/10.1039/C6EE03716J
Article
CAS
Google Scholar
Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke W-M (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58. https://doi.org/10.1002/masy.200651204
Article
CAS
Google Scholar
Davoglio RA, Biaggio SR, Bocchi N, Rocha-Filho RC (2013) Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes. Electrochim Acta 93:93–100. https://doi.org/10.1016/j.electacta.2013.01.062
Article
CAS
Google Scholar
Dichiara AB, Song A, Goodman SM, He D, Bai J (2017) Smart papers comprising carbon nanotubes and cellulose microfibers for multifunctional sensing applications. J Mater Chem A 5:20161–20169. https://doi.org/10.1039/C7TA04329E
Article
CAS
Google Scholar
Dong L, Xu C, Li Y, Huang Z-H, Kang F, Yang Q-H, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685. https://doi.org/10.1039/C5TA10582J
Article
CAS
Google Scholar
Dyatkin B, Presser V, Heon M, Lukatskaya MR, Beidaghi M, Gogotsi Y (2013) Development of a green supercapacitor composed entirely of environmentally friendly materials. Chemsuschem 6:2269–2280. https://doi.org/10.1002/cssc.201300852
Article
CAS
PubMed
Google Scholar
Fang Y et al (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195:674–679. https://doi.org/10.1016/j.jpowsour.2009.07.033
Article
CAS
Google Scholar
Gemeiner P et al (2015) Polypyrrole-coated multi-walled carbon nanotubes for the simple preparation of counter electrodes in dye-sensitized solar cells. Synth Met 210:323–331. https://doi.org/10.1016/j.synthmet.2015.10.020
Article
CAS
Google Scholar
Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61. https://doi.org/10.1016/j.msec.2013.10.006
Article
CAS
Google Scholar
Härdelin L, Hagström B (2015) Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. J Appl Polym Sci 132:41417. https://doi.org/10.1002/app.41417
Article
CAS
Google Scholar
He S, Hu C, Hou H, Chen W (2014) Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J Power Sources 246:754–761. https://doi.org/10.1016/j.jpowsour.2013.08.038
Article
CAS
Google Scholar
Hebeish A, Farag S, Sharaf S, Shaheen TI (2016) Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydr Polym 151:96–102. https://doi.org/10.1016/j.carbpol.2016.05.054
Article
CAS
PubMed
Google Scholar
Herou S, Schlee P, Jorge AB, Titirici M (2018) Biomass-derived electrodes for flexible supercapacitors. Curr Opin Green Sustain Chem 9:18–24. https://doi.org/10.1016/j.cogsc.2017.10.005
Article
Google Scholar
Hsu Y-C, Chen G-L, Lee R-H (2014a) Graphene oxide sheet-polyaniline nanocomposite prepared through in situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. J Polym Res 21:440. https://doi.org/10.1007/s10965-014-0440-5
Article
CAS
Google Scholar
Hsu Y-C, Tseng L-C, Lee R-H (2014b) Graphene oxide sheet–polyaniline nanohybrids for enhanced photovoltaic performance of dye-sensitized solar cells. J Polym Sci Part B Polym Phys 52:321–332. https://doi.org/10.1002/polb.23416
Article
CAS
Google Scholar
Hu L et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714. https://doi.org/10.1021/nl903949m
Article
CAS
Google Scholar
Huang Y et al (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438. https://doi.org/10.1016/j.nanoen.2016.02.047
Article
CAS
Google Scholar
Indrajit S, Abhijit G, Li-Chyong C, Kuei-Hsien C (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26. https://doi.org/10.1002/ese3.50
Article
CAS
Google Scholar
Jiang H, Ma H, Jin Y, Wang L, Gao F, Lu Q (2016) Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode. Sci Rep 6:31751. https://doi.org/10.1038/srep31751
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Q, Kacica C, Soundappan T, Liu K-K, Tadepalli S, Biswas P, Singamaneni S (2017) An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J Mater Chem A 5:13976–13982. https://doi.org/10.1039/c7ta03824k
Article
CAS
Google Scholar
Jost K, Perez CR, McDonough JK, Presser V, Heon M, Dion G, Gogotsi Y (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067. https://doi.org/10.1039/C1EE02421C
Article
CAS
Google Scholar
Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54. https://doi.org/10.1016/j.jmat.2016.01.001
Article
Google Scholar
Koga H, Tonomura H, Nogi M, Suganuma K, Nishina Y (2016) Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chem 18:1117–1124. https://doi.org/10.1039/C5GC01949D
Article
CAS
Google Scholar
Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D (2015) Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9:11200–11208. https://doi.org/10.1021/acsnano.5b04737
Article
CAS
PubMed
Google Scholar
Lay M, González I, Tarrés JA, Pellicer N, Bun KN, Vilaseca F (2017) High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes. Eur Polym J 91:1–9. https://doi.org/10.1016/j.eurpolymj.2017.03.021
Article
CAS
Google Scholar
Lee KYT, Shi HTH, Lian K, Naguib HE (2015) Flexible multiwalled carbon nanotubes/conductive polymer composite electrode for supercapacitor applications. Smart Mater Struct 24:115008
Article
CAS
Google Scholar
Lee T-W, Han M, Lee S-E, Jeong YG (2016) Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos Sci Technol 123:57–64. https://doi.org/10.1016/j.compscitech.2015.12.006
Article
CAS
Google Scholar
Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 4:1301655. https://doi.org/10.1002/aenm.201301655
Article
CAS
Google Scholar
Li N et al (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Adv 6:86744–86751. https://doi.org/10.1039/C6RA19529F
Article
CAS
Google Scholar
Li H et al (2017) Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 9:193–200. https://doi.org/10.1039/C6NR07921K
Article
CAS
PubMed
Google Scholar
Liang G, Zhu L, Xu J, Fang D, Bai Z, Xu W (2013) Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochim Acta 103:9–14. https://doi.org/10.1016/j.electacta.2013.04.065
Article
CAS
Google Scholar
Liu Y, Wang J, Zheng Y, Wang A (2012) Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chem Eng J 184:248–255. https://doi.org/10.1016/j.cej.2012.01.049
Article
CAS
Google Scholar
Liu T et al (2014) Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett 14:2522–2527. https://doi.org/10.1021/nl500255v
Article
CAS
PubMed
Google Scholar
Liu S, He K, Wu X, Luo X, Li B (2015) Surface modification of cellulose scaffold with polypyrrole for the fabrication of flexible supercapacitor electrode with enhanced capacitance. RSC Adv 5:87266–87276. https://doi.org/10.1039/C5RA17201B
Article
CAS
Google Scholar
Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016a) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648. https://doi.org/10.1007/s10570-015-0795-8
Article
CAS
Google Scholar
Liu X, Zhang T, Pang K, Duan Y, Zhang J (2016b) Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. RSC Adv 6:73358–73364. https://doi.org/10.1039/C6RA16535D
Article
CAS
Google Scholar
Liu F, Luo S, Liu D, Chen W, Huang Y, Dong L, Wang L (2017a) Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Interfaces 9:33791–33801. https://doi.org/10.1021/acsami.7b08382
Article
CAS
PubMed
Google Scholar
Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2017b) A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New J Chem 41:857–864. https://doi.org/10.1039/C6NJ03107B
Article
CAS
Google Scholar
Liu Y, Li G, Guo Y, Ying Y, Peng X (2017c) Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT. ACS Appl Mater Interfaces 9:14043–14050. https://doi.org/10.1021/acsami.7b03368
Article
CAS
PubMed
Google Scholar
Lu X et al (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324. https://doi.org/10.1016/j.jpowsour.2011.08.112
Article
CAS
Google Scholar
Lyu S, Chang H, Fu F, Hu L, Huang J, Wang S (2016) Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. J Power Sources 327:438–446. https://doi.org/10.1016/j.jpowsour.2016.07.091
Article
CAS
Google Scholar
Ma L, Liu R, Niu H, Xing L, Liu L, Huang Y (2016a) Flexible and freestanding supercapacitor electrodes based on nitrogen-doped carbon networks/graphene/bacterial cellulose with ultrahigh areal capacitance. ACS Appl Mater Interfaces 8:33608–33618. https://doi.org/10.1021/acsami.6b11034
Article
CAS
PubMed
Google Scholar
Ma L, Liu R, Niu H, Zhao M, Huang Y (2016b) Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Compos Sci Technol 137:87–93. https://doi.org/10.1016/j.compscitech.2016.10.027
Article
CAS
Google Scholar
Meftahi A, Khajavi R, Rashidi A, Rahimi MK, Bahador A (2018) Preventing the collapse of 3D bacterial cellulose network via citric acid. J Nanostruct Chem. https://doi.org/10.1007/s40097-018-0275-4
Article
Google Scholar
Miao F, Shao C, Li X, Wang K, Lu N, Liu Y (2016) Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J Power Sources 329:516–524. https://doi.org/10.1016/j.jpowsour.2016.08.111
Article
CAS
Google Scholar
Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182. https://doi.org/10.1021/jp911272m
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang J-H, Liu X, Wu M, Wu Y-Y, Zhang X-M, Sun R-C (2014) Fabrication and characterization of regenerated cellulose films using different ionic liquids. J Spectrosc 2014:8. https://doi.org/10.1155/2014/214057
Article
CAS
Google Scholar
Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, Xu J (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr Polym 157:344–352. https://doi.org/10.1016/j.carbpol.2016.10.004
Article
CAS
PubMed
Google Scholar
Qi H, Schulz B, Vad T, Liu J, Mäder E, Seide G, Gries T (2015) Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 7:22404–22412. https://doi.org/10.1021/acsami.5b06229
Article
CAS
PubMed
Google Scholar
Qi X et al (2017) Recent progress on flexible and wearable supercapacitors. Small 13:1701827. https://doi.org/10.1002/smll.201701827
Article
CAS
Google Scholar
Raghunathan SP, Narayanan S, Poulose AC, Joseph R (2017) Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr Polym 157:1024–1032. https://doi.org/10.1016/j.carbpol.2016.10.065
Article
CAS
PubMed
Google Scholar
Ramesh S, Haldorai Y, Kim HS, Kim J-H (2017) A nanocrystalline Co3O4@polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors. RSC Adv 7:36833–36843. https://doi.org/10.1039/C7RA06093A
Article
CAS
Google Scholar
Rui-Hong X, Peng-Gang R, Jian H, Fang R, Lian-Zhen R, Zhen-Feng S (2016) Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr Polym 138:222–228. https://doi.org/10.1016/j.carbpol.2015.11.042
Article
CAS
PubMed
Google Scholar
Shu K, Chao Y, Chou S, Wang C, Zheng T, Gambhir S, Wallace GG (2018) A “Tandem” strategy to fabricate flexible graphene/polypyrrole nanofiber film using the surfactant-exfoliated graphene for supercapacitors. ACS Appl Mater Interfaces 10:22031–22041. https://doi.org/10.1021/acsami.8b03901
Article
CAS
PubMed
Google Scholar
Su Y, Zhitomirsky I (2015) Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes. Appl Energy 153:48–55. https://doi.org/10.1016/j.apenergy.2014.12.010
Article
CAS
Google Scholar
Su H et al (2016) Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Adv 6:83564–83572. https://doi.org/10.1039/C6RA14885A
Article
CAS
Google Scholar
Tang L, Yang Z, Duan F, Chen M (2017) Hierarchical architecture of ultrashort carbon nanotubes/polyaniline nanocables coated on graphene sheets for advanced supercapacitors. J Mater Sci Mater Electron 28:15804–15818. https://doi.org/10.1007/s10854-017-7475-4
Article
CAS
Google Scholar
Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5:3819–3831. https://doi.org/10.1039/C6TA04844G
Article
CAS
Google Scholar
Wang Y, Chang C, Zhang L (2010) Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges. Macromol Mater Eng 295:137–145. https://doi.org/10.1002/mame.200900212
Article
CAS
Google Scholar
Wang Y, Yang X, Qiu L, Li D (2013) Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ Sci 6:477–481. https://doi.org/10.1039/C2EE24018A
Article
CAS
Google Scholar
Wang F, Kim HJ, Park S, Kee CD, Kim SJ, Oh IK (2016) Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core–shell composite network. Compos Sci Technol 128:33–40. https://doi.org/10.1016/j.compscitech.2016.03.012
Article
CAS
Google Scholar
Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831. https://doi.org/10.1016/j.polymer.2013.01.051
Article
CAS
Google Scholar
Wei H, Wei S, Tian W, Zhu D, Liu Y, Yuan L, Li X (2014) Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor. Sci Rep 4:7050. https://doi.org/10.1038/srep07050
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Lian M (2017) Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J Power Sources 362:184–191. https://doi.org/10.1016/j.jpowsour.2017.07.042
Article
CAS
Google Scholar
Wu W, Yang L, Chen S, Shao Y, Jing L, Zhao G, Wei H (2015) Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Adv 5:91645–91653. https://doi.org/10.1039/C5RA17036B
Article
CAS
Google Scholar
Wu X et al (2018) Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J Power Sources 397:189–195. https://doi.org/10.1016/j.jpowsour.2018.07.031
Article
CAS
Google Scholar
Xiao X et al (2014) Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6:1–9. https://doi.org/10.1016/j.nanoen.2014.02.014
Article
CAS
Google Scholar
Xu J et al (2015) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159. https://doi.org/10.1016/j.orgel.2015.05.037
Article
CAS
Google Scholar
Xu L, Jia M, Li Y, Zhang S, Jin X (2017) Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Adv 7:31342–31351. https://doi.org/10.1039/C7RA04566B
Article
CAS
Google Scholar
Yang C, Shen J, Wang C, Fei H, Bao H, Wang G (2014) All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J Mater Chem A 2:1458–1464. https://doi.org/10.1039/C3TA13953K
Article
CAS
Google Scholar
Yesi Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH (2016) Directly-grown hierarchical carbon nanotube@polypyrrole core–shell hybrid for high-performance flexible supercapacitors. Chemsuschem 9:370–378. https://doi.org/10.1002/cssc.201501495
Article
CAS
PubMed
Google Scholar
Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6:470–476. https://doi.org/10.1039/C2EE23977A
Article
CAS
Google Scholar
Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. https://doi.org/10.1002/adma.200600442
Article
CAS
Google Scholar
Zhang B et al (2011) A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6:431. https://doi.org/10.1186/1556-276X-6-431
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Yu X, Zhu P, Zhou F, Li G, Sun R, Wong C-P (2018) Laboratory filter paper as a substrate material for flexible supercapacitors. Sustain Energy Fuels 2:147–154. https://doi.org/10.1039/C7SE00411G
Article
CAS
Google Scholar
Zhao C, Shu K, Wang C, Gambhir S, Wallace GG (2015a) Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochim Acta 172:12–19. https://doi.org/10.1016/j.electacta.2015.05.019
Article
CAS
Google Scholar
Zhao Y, Zhang Z, Ren Y, Ran W, Chen X, Wu J, Gao F (2015b) Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. J Power Sources 286:1–9. https://doi.org/10.1016/j.jpowsour.2015.03.141
Article
CAS
Google Scholar
Zhao J et al (2016) Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Prog Nat Sci Mater Int 26:237–242. https://doi.org/10.1016/j.pnsc.2016.05.015
Article
CAS
Google Scholar
Zheng Y, Wang A (2014) Kapok fiber: structure and properties. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy: processing and properties. Springer, Cham, pp 101–110. https://doi.org/10.1007/978-3-319-07641-6_6
Chapter
Google Scholar
Zhu C et al (2016a) High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. ACS Sustain Chem Eng 4:4545–4553. https://doi.org/10.1021/acssuschemeng.6b00555
Article
CAS
Google Scholar
Zhu M et al (2016b) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6:1600969. https://doi.org/10.1002/aenm.201600969
Article
CAS
Google Scholar