, Volume 26, Issue 7, pp 4629–4640 | Cite as

Facile flame retardant finishing of cotton fabric with hydrated sodium metaborate

  • Benjamin Tawiah
  • Bin Yu
  • Wei Yang
  • Richard K. K. Yuen
  • Bin FeiEmail author
Original Research


Flame retardant (FR) cotton fabric was facilely prepared using hydrated sodium metaborate (SMB) crystalized in situ in the interstices and on the surface of cotton fabric via one-pot impregnation approach, and the thermal, FR and mechanical properties were investigated. TGA results showed that SMB treatment improved the thermal stability of cotton fabric and enhanced the char yield. The treated cotton also had an LOI value of 28.5% with an afterglow time of less than 1 s in the UL-94 test (V-0). Considerable reductions in peak heat release rate (PHRR ~ 91.8%), total heat release (THR ~ 47.2%), peak carbon monoxide and carbon dioxide produced (PCOP ~ 28.6, PCO2P ~ 85.5%) were obtained. The postburn residues examined by SEM and Raman spectroscopy revealed a preserved fabric structure with high graphite content. SMB treated cotton fabrics demonstrated negligible changes in the tensile strength and the elongation at break. The result demonstrates SMB as an effective flame-retardant for cotton fabrics.


Cotton fabric Flame retardant Cone calorimeter Sodium metaborate Mechanical properties 



We are grateful for the funding support of GRF project 15208015.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest for this research work.

Supplementary material

10570_2019_2371_MOESM1_ESM.docx (967 kb)
Supplementary material 1 (DOCX 966 kb)


  1. Abou-Okeil A, El-Sawy SM, Abdel-Mohdy FA (2013) Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydr Polym 92:2293–2298. CrossRefGoogle Scholar
  2. Aenishänslin R, Guth C, Hofmann P, Maeder A, Nachbur H (1969) A new chemical approach to durable flame-retardant cotton fabrics. Text Res J 39:375–381CrossRefGoogle Scholar
  3. Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives RSC. Advances 5:24239–24263Google Scholar
  4. Alongi J, Ciobanu M, Malucelli G (2012) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87:2093–2099CrossRefGoogle Scholar
  5. Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149CrossRefGoogle Scholar
  6. Angeli F, Villain O, Schuller S, Charpentier T, de Ligny D, Bressel L, Wondraczek L (2012) Effect of temperature and thermal history on borosilicate glass structure. Phys Rev B 85:054110CrossRefGoogle Scholar
  7. Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272CrossRefGoogle Scholar
  8. Bashar MM, Khan MA (2013) An overview on surface modification of cotton fiber for apparel use. J Polym Environ 21:181–190CrossRefGoogle Scholar
  9. Bayer EA, Lamed R (1992) The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3:171–188CrossRefGoogle Scholar
  10. Brillard A, Habermacher D, Brilhac J-F (2017) Thermal degradations of used cotton fabrics and of cellulose: kinetic and heat transfer modeling. Cellulose 24:1579–1595CrossRefGoogle Scholar
  11. Chan SY et al (2018) A novel boron–nitrogen intumescent flame retardant coating on cotton with improved washing durability. Cellulose 25:843–857CrossRefGoogle Scholar
  12. Chang S, Slopek RP, Condon B, Grunlan JC (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53:3805–3812. CrossRefGoogle Scholar
  13. Chehna AB, Laidlaw A, Ricard LB, Varley AR (2013) Colorfastness to laundering: accelerated (test method 61), in the AATCC Technical Manual. NC, USA. pp 108–112Google Scholar
  14. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076CrossRefGoogle Scholar
  15. El-Shafei A, ElShemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym 118:83–90. CrossRefGoogle Scholar
  16. Feng J et al (2017) Enhanced thermal stabilities and char yields of carbon fibers reinforced boron containing novolac phenolic resins composites. J Polym Res 24:176CrossRefGoogle Scholar
  17. Gaan S, Sun G (2007) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974CrossRefGoogle Scholar
  18. Gann RG, Babrauskas V, Peacock RD, Hall JR (1994) Fire conditions for smoke toxicity measurement. Fire Mater 18:193–199CrossRefGoogle Scholar
  19. Hirschler MM (2015) Flame retardants and heat release: review of traditional studies on products and on groups of polymers. Fire Mater 39:207–231CrossRefGoogle Scholar
  20. Horrocks A, Kandola BK, Davies P, Zhang S, Padbury S (2005) Developments in flame retardant textiles—a review. Polym Degrad Stab 88:3–12CrossRefGoogle Scholar
  21. Huang G, Liang H, Wang X, Gao J (2012) Poly (acrylic acid)/clay thin films assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Ind Eng Chem Res 51:12299–12309Google Scholar
  22. Kaplan DL (1998) Introduction to biopolymers from renewable resources. In: Biopolymers from renewable resources. Springer, Berlin, pp 1–29Google Scholar
  23. Li Y-C et al (2010) Flame retardant behavior of polyelectrolyte–clay thin film assemblies on cotton fabric. ACS Nano 4:3325–3337CrossRefGoogle Scholar
  24. Lo C-F, Karan K, Davis BR (2007) Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Ind Eng Chem Res 46:5478–5484. CrossRefGoogle Scholar
  25. Lu S-Y, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712CrossRefGoogle Scholar
  26. Martin C, Hunt B, Ebdon J, Ronda J, Cadiz V (2006a) Synthesis, crosslinking and flame retardance of polymers of boron-containing difunctional styrenic monomers. React Funct Polym 66:1047–1054CrossRefGoogle Scholar
  27. Martin C, Ronda J, Cadiz V (2006b) Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 91:747–754CrossRefGoogle Scholar
  28. Nine MJ, Tran DN, ElMekawy A, Losic D (2017a) Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon 117:252–262CrossRefGoogle Scholar
  29. Nine MJ, Tran DN, Tung TT, Kabiri S, Losic D (2017b) Graphene-borate as an efficient fire retardant for cellulosic materials with multiple and synergetic modes of action. ACS Appl Mater Interfaces 9:10160–10168CrossRefGoogle Scholar
  30. Paul R (2014) Functional finishes for textiles: improving comfort, performance and protection. Woodhead Publishing Ltd, Cambridge, UK, pp 1–14Google Scholar
  31. Pişkin MB, Figen AK, Ergüven H (2013) Investigation of the reaction mechanism and kinetics of production of anhydrous sodium metaborate (NaBO2) by a solid-state reaction. Res Chem Intermed 39:569–583. CrossRefGoogle Scholar
  32. Ravandi SH, Valizadeh M (2011) Properties of fibers and fabrics that contribute to human comfort. In: Improving comfort in clothing. Elsevier, Amsterdam, pp 61–78Google Scholar
  33. Sabir T (2017) Fibers used for high-performance apparel. In: High-performance apparel. Elsevier, Amsterdam, pp 7–32Google Scholar
  34. Sasaki K, Tenjimbayashi M, Manabe K, Shiratori S (2015) Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl Mater Interfaces 8:651–659CrossRefGoogle Scholar
  35. Tawiah B, Yu B, Cheung WY, Chan SY, Yang W, Fei B (2018) Synthesis and application of synergistic azo-boron-BPA/polydopamine as efficient flame retardant for poly (lactic acid). Polym Degrad Stab 152:64–74CrossRefGoogle Scholar
  36. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRefGoogle Scholar
  37. Wang Y-Z (2008) Halogen-free flame retardants. In: Advances in fire retardant materials. Elsevier, Amsterdam, pp 67–94Google Scholar
  38. Wu W, Yang CQ (2007) Comparison of different reactive organophosphorus flame retardant agents for cotton. Part II: fabric flame resistant performance and physical properties. Polym Degrad Stab 92:363–369CrossRefGoogle Scholar
  39. Xie K, Gao A, Zhang Y (2013) Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr Polym 98:706–710CrossRefGoogle Scholar
  40. Yang Z, Fei B, Wang X, Xin JH (2012a) A novel halogen-free and formaldehyde-free flame retardant for cotton fabrics. Fire Mater 36:31–39CrossRefGoogle Scholar
  41. Yang Z, Wang X, Lei D, Fei B, Xin JH (2012b) A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 97:2467–2472CrossRefGoogle Scholar
  42. Zhang Q-H, Gu J, Chen G-Q, Xing T-L (2016) Durable flame retardant finish for silk fabric using boron hybrid silica sol. Appl Surf Sci 387:446–453CrossRefGoogle Scholar
  43. Zhang J, Horton J, Gao XH (2017) Methods of conferring fire retardancy to wood and fire-retardant wood products. Google PatentsGoogle Scholar
  44. Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J Anal Appl Pyrol 71:645–655. CrossRefGoogle Scholar
  45. Zhu S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Benjamin Tawiah
    • 1
  • Bin Yu
    • 1
  • Wei Yang
    • 2
  • Richard K. K. Yuen
    • 2
  • Bin Fei
    • 1
    Email author
  1. 1.Institute of Textiles and ClothingHong Kong Polytechnic UniversityKowloonChina
  2. 2.Department of Civil and Architectural EngineeringCity University of Hong KongKowloonChina

Personalised recommendations