Terahertz complex conductivity of nanofibrillar cellulose-PEDOT:PSS composite films

Abstract

We investigate the terahertz transmission through flexible composite films that contain nanofibrillar cellulose (NFC) and different blending percentages of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The real part of terahertz complex conductivity is found to decrease with decreasing frequency for each NFC composite film and to approach a finite positive value dependent on the PEDOT:PSS blending percentage in the limit of zero frequency. Both the real and imaginary parts of complex conductivity spectra can be fitted simultaneously with an extended Drude model that describes a partially localized nature of carriers. Our spectral analysis indicates that carriers in the NFC composite become denser and also less localized as the PEDOT:PSS blending percentage is increased.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ai X, Beard MC, Knutsen KP, Shaheen SE, Rumbles G, Ellingson RJ (2006) Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. J Phys Chem B 110:25462–25471

    Article  CAS  PubMed  Google Scholar 

  2. Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimova RI, Khripunov AK, Tkachenko AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151

    Article  CAS  Google Scholar 

  3. Andrianov AV, Aleshin AN, Khripunov AK, Trukhin VN (2015) Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth Met 205:201–205

    Article  CAS  Google Scholar 

  4. Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239

    Article  CAS  PubMed  Google Scholar 

  5. Carnio BN, Ahvazi B, Elezzabi AY (2016) Terahertz properties of cellulose nanocrystals and films. J Infrared Millim Terahertz Waves 37:281–288

    Article  CAS  Google Scholar 

  6. Cooke DG, MacDonald AN, Hryciw A, Wang J, Li Q, Meldrum A, Hegmann FA (2006) Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys Rev B 73:193311

    Article  CAS  Google Scholar 

  7. Cooke DG, Krebs FC, Jepsen PU (2012) Direct observation of sub-100 fs mobile charge generation in a polymer–fullerene film. Phys Rev Lett 108:056603

    Article  CAS  PubMed  Google Scholar 

  8. Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112:7928–7935

    Article  CAS  Google Scholar 

  9. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mat Today 16:220–227

    Article  CAS  Google Scholar 

  10. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  11. Elfwing A, Ponseca CS Jr, Ouyang L, Urbanowicz A, Krotkus A, Tu D, Forchheimer R, Inganäs O (2018) Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv Funct Mater 28:1706595

    Article  CAS  Google Scholar 

  12. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  CAS  PubMed  Google Scholar 

  13. Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663

    Article  CAS  Google Scholar 

  14. Furukawa Y (1996) Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J Phys Chem 100:15644–15653

    Article  CAS  Google Scholar 

  15. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wagberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518

    Article  CAS  Google Scholar 

  16. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    Article  CAS  PubMed  Google Scholar 

  17. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  18. Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr Polym 127:86–93

    Article  CAS  PubMed  Google Scholar 

  20. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  21. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165

    Article  CAS  PubMed  Google Scholar 

  22. Lee K, Heeger AJ, Cao Y (1993) Reflectance of polyaniline protonated with camphor sulfonic acid: disordered metal on the metal–insulator boundary. Phys Rev B 48:14884–14891

    Article  CAS  Google Scholar 

  23. Lee K, Menon R, Yoon CO, Heeger AJ (1995) Reflectance of conducting polypyrrole: observation of the metal–insulator transition driven by disorder. Phys Rev B 52:4779–4787

    Article  CAS  Google Scholar 

  24. Lloyd-Hughes J, Jeon T-I (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33:871–925

    Article  CAS  Google Scholar 

  25. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  26. Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  CAS  Google Scholar 

  27. Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    CAS  PubMed  Google Scholar 

  29. Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20:1413–1424

    Article  CAS  Google Scholar 

  31. Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110

    Article  CAS  Google Scholar 

  32. Smith NV (2001) Classical generalization of the Drude formula for the optical conductivity. Phys Rev B 64:155106

    Article  CAS  Google Scholar 

  33. Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23:1935–1961

    Article  CAS  PubMed  Google Scholar 

  34. Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829

    Article  CAS  Google Scholar 

  35. Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719

    Article  CAS  Google Scholar 

  36. Unuma T, Fujii K, Kishida H, Nakamura A (2010) Terahertz complex conductivities of carriers with partial localization in doped polythiophenes. Appl Phys Lett 97:033308

    Article  CAS  Google Scholar 

  37. Unuma T, Umemoto A, Kishida H (2013a) Anisotropic terahertz complex conductivities in oriented polythiophene films. Appl Phys Lett 103:213305

    Article  CAS  Google Scholar 

  38. Unuma T, Yamada N, Nakamura A, Kishida H, Lee S-C, Hong E-Y, Lee S-H, Kwon O-P (2013b) Direct observation of carrier delocalization in highly conducting polyaniline. Appl Phys Lett 103:053303

    Article  CAS  Google Scholar 

  39. Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ (2015) Conductivity of PEDOT:PSS on spin-coated and drop cast nanofibrillar cellulose thin films. Nanoscale Res Lett 10:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van den Berg O, Schroeter M, Capadonaac JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753

    Article  CAS  Google Scholar 

  41. Walther M, Cooke DG, Sherstan C, Hajar M, Freeman MR, Hegmann FA (2007) Terahertz conductivity of thin gold films at the metal–insulator percolation transition. Phys Rev B 76:125408

    Article  CAS  Google Scholar 

  42. Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F (2014) Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sour 249:148–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Nagaoka University of Technology Presidential Research Grant. J. J. S. wishes to thank the UEF Faculty of Science and Forestry (Grant No. 579/2017) for the financial support. Åbo Akademi University (Laboratory of Paper Coating and Converting) and South China University of Technology (State Key Laboratory of Pulp and Paper Engineering) are acknowledged for laboratory access during the sample preparation and for producing NFC suspensions, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeya Unuma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Unuma, T., Kobayashi, O., Hamdany, I.F.A. et al. Terahertz complex conductivity of nanofibrillar cellulose-PEDOT:PSS composite films. Cellulose 26, 3247–3253 (2019). https://doi.org/10.1007/s10570-019-02276-5

Download citation

Keywords

  • Nanofibrillar cellulose
  • Conducting polymers
  • Composite films
  • Terahertz spectroscopy
  • Charge transport