Skip to main content

Advertisement

Log in

Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, A. angustifolia cellulose was tested as a potential fibre for use in biocomposites based on a polylactic acid (PLA)/natural rubber (NR) blend compatibilised with liquid natural rubber. Biocomposite analyses were performed via mechanical, physical, morphological, thermal, and biodegradation characterisations to evaluate the influence of the cellulose content on the properties of biocomposites. The addition of Agave cellulose improved the tensile properties of the biocomposites with biocomposites reinforced by 7.5 wt% cellulose showing maximum tensile strength. Differential scanning calorimetry analysis showed that Agave cellulose acts as a nucleating agent for PLA, and the thermal stability improved up to 6% upon cellulose addition. Soil burial tests revealed that the biodegradability, which is directly influenced by the water absorption of the biocomposites, increased with increasing cellulose addition. Finally, water absorption tests indicated that biocomposites with low water resistance increase the degradation rates of the PLA–NR blends.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bao RY, Yang W, Liu ZY, Xie BH, Yang MB (2015) Polymorphism of a high-molecular-weight racemic poly (l-lactide)/poly(d-lactide) blend: effect of melt blending with poly (methyl methacrylate). RSC Adv 5:19058–19066

    Article  CAS  Google Scholar 

  • Battegazzore D, Bocchini S, Alongi J, Frache A, Marino F (2014) Cellulose extracted from rice husk as filler for poly (lactic acid): preparation and characterization. Cellulose 21:1813–1821

    Article  CAS  Google Scholar 

  • Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607

    Article  CAS  Google Scholar 

  • Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831

    Article  CAS  Google Scholar 

  • Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part II: properties evaluation. Carbohydr Polym 96:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633

    Article  CAS  Google Scholar 

  • Chumeka W, Tanrattanakul V, Pilard JF, Pasetto P (2013) Effect of poly (vinyl acetate) on mechanical properties and characteristics of poly (lactic acid)/natural rubber blends. J Polym Environ 21:450–460

    Article  CAS  Google Scholar 

  • Chumeka W, Pasetto P, Pilard JF, Tanrattanakul V (2014) Bio-based triblock copolymers from natural rubber and poly (lactic acid): synthesis and application in polymer blending. Polymer 55:4478–4487

    Article  CAS  Google Scholar 

  • De SK, White JR (1996) Short fibre-polymer composites. Woodhead Publishing Limited, England

    Book  Google Scholar 

  • Ding W, Chu RK, Mark LH, Park CB, Sain M (2015) Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J 71:231–247

    Article  CAS  Google Scholar 

  • Dogu B, Kaynak C (2016) Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization. Cellulose 23:611–622

    Article  CAS  Google Scholar 

  • Garlotta D, Doane W, Shogren R, Lawton J, Willett JL (2003) Mechanical and thermal properties of starch-filled poly(d, l-lactic acid)/poly(hydroxy ester ether) biodegradable blends. J Appl Polym Sci 88:1775–1786

    Article  CAS  Google Scholar 

  • Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808

    Article  CAS  Google Scholar 

  • Groeninckx G, Vanneste M, Everaert V (2002) Polymer blends handbook. Academic Publishers, Kluwer

    Google Scholar 

  • Hassan A, Wahit MU, Chee CY (2003) Mechanical and morphological properties of PP/NR/LLDPE ternary blend–effect of HVA-2. Polym Test 22:281–290

    Article  CAS  Google Scholar 

  • Ismail H, Jaffri RM, Rozman HD (2003) The effects of filler loading and vulcanisation system on properties of oil palm wood flour-natural rubber composites. J Elastom Plast 35:181–192

    Article  CAS  Google Scholar 

  • Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly (lactic acid) by melt blending with natural rubber. J Appl Polym Sci 124:5027–5036

    CAS  Google Scholar 

  • Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483

    Article  CAS  Google Scholar 

  • Ke T, Sun SX, Seib P (2003) Blending of poly(lactic acid) and starches containing varying amylose content. J Appl Polym Sci 89:3639–3646

    Article  CAS  Google Scholar 

  • Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  • Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. CRC Press, Madison Avenue

    Google Scholar 

  • Odent J, Raquez JM, Leclère P, Lauro F, Dubois P (2015) Crystallization-induced toughness of rubber-modified polylactide: combined effects of biodegradable impact modifier and effective nucleating agent. Polym Adv Technol 26:814–822

    Article  CAS  Google Scholar 

  • Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897

    Article  CAS  Google Scholar 

  • Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8:1893–1908

    Article  Google Scholar 

  • Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202

    Article  CAS  Google Scholar 

  • Rosli NA, Ahmad I, Anuar FH, Abdullah I (2018) The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly (lactic acid). J Clean Prod 198:987–995

    Article  CAS  Google Scholar 

  • Shah BL, Selke SE, Walters MB, Heiden PA (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29:655–663

    Article  CAS  Google Scholar 

  • Tawakkal ISM, Talib RA, Abdan K, Ling CN (2012) Mechanical and physical properties of kenaf-derived cellulose (KDC)-filled polylactic acid (PLA) composites. BioResources 7:1643–1655

    Article  Google Scholar 

  • Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409

    Article  CAS  Google Scholar 

  • Thepthawat A, Srikulkit K (2014) Improving the properties of polylactic acid by blending with low molecular weight polylactic acid-g-natural rubber. Polym Eng Sci 54:2770–2776

    Article  CAS  Google Scholar 

  • Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777

    Article  CAS  PubMed  Google Scholar 

  • Tronc E, Hernandez-Escobar CA, Ibarra-Gomez R, Estrada-Monje A, Navarrete-Bolanos J, Zaragoza-Contreras EA (2007) Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydr Polym 67:245–255

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos Part A Appl Sci Manuf 43:735–741

    Article  CAS  Google Scholar 

  • Wang H, Sun X, Seib P (2002) Mechanical properties of poly (lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J Appl Polym Sci 84:1257–1262

    Article  CAS  Google Scholar 

  • Yew GH, Yusof AM, Ishak ZM, Ishiaku US (2005) Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500

    Article  CAS  Google Scholar 

  • Zhang L, Liu H (1996) Biodegradability of regenerated cellulose films in soil. Ind Eng Chem Res 35:4682–4685

    Article  CAS  Google Scholar 

  • Zhang C, Huang Y, Luo C, Jiang L, Dan Y (2013) Enhanced ductility of polylactide materials: reactive blending with pre-hot sheared natural rubber. J Polym Res 20:121

    Article  CAS  Google Scholar 

  • Zhang K, Nagarajan V, Misra M, Mohanty AK (2014) Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interfaces 6:12436–12448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research Grants [FRGS-MRSA/1/2016/STG07/UKM/01/1] and [GUP-2018–028] provided by the Ministry of Education, Malaysia (MOE), and Universiti Kebangsaan Malaysia (UKM). The authors would also like to thank Dr. Md. Akhir Hamid from the Malaysian Agriculture Research and Development Institute (MARDI) for the processing of raw agave fibres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishak Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosli, N.A., Ahmad, I., Anuar, F.H. et al. Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends. Cellulose 26, 3205–3218 (2019). https://doi.org/10.1007/s10570-019-02262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02262-x

Keywords