Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles

Abstract

The synthesis of up-conversion luminescent composite films based on a nanocellulose matrix containing Sr1−xHoxF2+x particles was proposed. The combination of sulfuric acid hydrolysis and ultrasonication allowed us to synthesize a series of stable nanocellulose dispersions from various raw materials (powdered sulphate bleached wood pulp, Blue Ribbon filter paper, and microcrystalline cellulose Avicel). The size distribution of cellulose nanoparticles in the aqueous dispersions was determined. Cellulose nanocrystals (CNC) and/or cellulose nanofibrils (CNF) dispersions were used to fabricate thin films by solution casting followed by solvent evaporation under ambient conditions. The size and shape of cellulose nanoparticles, surface morphology, crystallinity index of nanocellulose, polymerization degree, and optical properties were studied. By mixing aqueous dispersions of CNC with up-conversion Sr1−xHoxF2+x particles, homogeneous suspensions were obtained. Finally, a solution casting technique was used to prepare CNC/Sr1−xHoxF2+x and CNC/CNF/Sr1−xHoxF2+x nanocomposite films. CNC/CNF dispersions were utilized for the production of flexible, durable, transparent composite films. The synthesized nanocomposites demonstrated intense red luminescence upon Ho3+ excitation by 1912 nm laser radiation. The obtained up-conversion luminescent composite films can be considered as a promising material for photonics, in particular for near-IR laser radiation visualization, luminescent labeling and luminescent sensorics.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abbasi-Moayed S, Golmohammadi H, Hormozi-Nezhad MR (2018) A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 10:2492–2502. https://doi.org/10.1039/C7NR05801B

    Article  CAS  PubMed  Google Scholar 

  2. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794. https://doi.org/10.1007/s10570-013-9871-0

    Article  CAS  Google Scholar 

  3. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  4. Al-Dulaimi AA, Wanrosli W (2017) Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J Polym Environ 25:192–202. https://doi.org/10.1007/s10924-016-0798-z

    Article  CAS  Google Scholar 

  5. Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415. https://doi.org/10.1021/la9911180

    Article  CAS  Google Scholar 

  6. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174. https://doi.org/10.1021/cr020357g

    Article  CAS  PubMed  Google Scholar 

  7. Beck-Candanedo S, Roman M, Gray D (2005) Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromol 6:1048–1054. https://doi.org/10.1021/bm049300p

    Article  CAS  Google Scholar 

  8. Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5:16003–16024. https://doi.org/10.1039/C7TA02006F

    Article  Google Scholar 

  9. Bumbudsanpharoke N, Lee W, Chung U, Ko S (2018) Study of humidity-responsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response. Cellulose 25:305–317. https://doi.org/10.1007/s10570-017-1571-8

    Article  CAS  Google Scholar 

  10. Cao Y, Jiang Y, SongY Cao S, Miao M, Feng X, Fang J, Shi L (2015) Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydr Polym 131:152–158. https://doi.org/10.1016/j.carbpol.2015.05.063

    Article  CAS  PubMed  Google Scholar 

  11. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  12. Chu G, Feng J, Wang Y, Zhang X, Xu Y, Zhang H (2014) Chiral nematic mesoporous films of ZrO2:Eu3+: new luminescent materials. Dalton Trans 43:15321–15327. https://doi.org/10.1039/C4DT00662C

    Article  CAS  PubMed  Google Scholar 

  13. Chu G, Wang X, Chen T, Xu W, Wang Y, Song H, Xu Y (2015) Chiral electronic transitions of YVO4:Eu3+ nanoparticles in cellulose based photonic materials with circularly polarized excitation. J Mater Chem C 3:3384–3390. https://doi.org/10.1039/C4TC02913E

    Article  CAS  Google Scholar 

  14. Dai S, Prempeh N, Liu D, Fan Y, Gu M, Chang Y (2017) Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr Polym 174:531–539. https://doi.org/10.1016/j.carbpol.2017.06.098

    Article  CAS  PubMed  Google Scholar 

  15. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  PubMed  Google Scholar 

  16. Dumanli AG, Kamita G, Landman J, van der Kooij H, Glover BJ, Baumberg JJ, Steiner U, Vignolini S (2014) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650. https://doi.org/10.1002/adom.201400112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65. https://doi.org/10.1021/bm700769p

    Article  CAS  Google Scholar 

  18. Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. https://doi.org/10.1021/bm400219u

    Article  CAS  Google Scholar 

  19. Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30. https://doi.org/10.1007/s10570-009-9372-3

    Article  CAS  Google Scholar 

  20. Fedorov PP, Luginina AA, Kuznetsov SV, Osiko VV (2011) Nanofluorides. J Fluor Chem 132:1012–1039. https://doi.org/10.1016/j.jfluchem.2011.06.025

    Article  CAS  Google Scholar 

  21. Fedorov PP, Luginina AA, Popov AI (2015) Transparent oxyfluoride glass ceramics. J Fluor Chem 172:22–50. https://doi.org/10.1016/j.jfluchem.2015.01.009

    Article  CAS  Google Scholar 

  22. Fedorov PP, Luginina AA, Rozhnova YA, Kuznetsov SV, Voronov VV, Uvarov OV, Pynenkov AA, Nishchev KN (2017) Preparation of nanodispersed fluorite-type Sr1−xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions. J Fluor Chem 194:8–15. https://doi.org/10.1016/j.jfluchem.2016.12.003

    Article  CAS  Google Scholar 

  23. Feng X, Meng X, Zhao J, Miao M, Shi L, Zhang S, Fang J (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772. https://doi.org/10.1007/s10570-015-0617-z

    Article  CAS  Google Scholar 

  24. Frka-Petesic B, Guidetti G, Kamita G, Vignolini S (2017) Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv Mater 29:1701469. https://doi.org/10.1002/adma.201701469

    Article  CAS  Google Scholar 

  25. Giese M, Blusch LK, Khan MK, MacLachlan M (2015) Functional materials from cellulose-derived liquid crystal templates. J Angew Chem Int Ed 54:2888–2910. https://doi.org/10.1002/anie.201407141

    Article  CAS  Google Scholar 

  26. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446

    Article  CAS  Google Scholar 

  27. Gray DG (2016) Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6:213. https://doi.org/10.3390/nano6110213

    Article  CAS  PubMed Central  Google Scholar 

  28. Gray DG, Mu X (2015) Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials 8:7873–7888. https://doi.org/10.3390/ma8115427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals: a review. Curr Opin Colloid Interface Sci 29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005

    Article  CAS  Google Scholar 

  30. Gu Z, Yan L, Tain G, Li S, Chai Z, Zhao Y (2013) Resent advances in design and fabrication of upconversion nanoparticles and their safe theranostics application. Adv Mater 25:3758–3779

    Article  CAS  PubMed  Google Scholar 

  31. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829

    Article  CAS  Google Scholar 

  32. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. https://doi.org/10.1039/c3cs60204d

    Article  CAS  PubMed  Google Scholar 

  33. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    Article  CAS  PubMed  Google Scholar 

  34. Hamid SBA, Zain SK, Das R, Centi G (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349–355. https://doi.org/10.1016/j.carbpol.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  35. Hassan ML, Fadel SM, Moorefield C, Newkome GR (2014) Dendronized cellulose nanocrystals as templates for preparation of zns and cds quantum dots. J Macromol Sci A 51:743–749. https://doi.org/10.1080/10601325.2014.936296

    Article  CAS  Google Scholar 

  36. Haywood AD, Davis VF (2017) Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24:705–716. https://doi.org/10.1007/s10570-016-1150-4

    Article  CAS  Google Scholar 

  37. Ioelovich MY (2012) Study of cellulose interaction with concentrated solutions of sulfuric acid. ISRN Chem Eng. https://doi.org/10.5402/2012/428974

    Article  Google Scholar 

  38. Ioelovich MY (2016) Models of supramolecular structure and properties of cellulose. Polym Sci Ser A 58:925–943. https://doi.org/10.7868/S2308112016060109

    Article  CAS  Google Scholar 

  39. Ji S, Jang J, Cho E, Kim SH, Kang ES, Kim J, Kim HK, Kong H, Kim SK, Kim JY, Park JU (2017) High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv Mater 29:1700538. https://doi.org/10.1002/adma.201700538

    Article  CAS  Google Scholar 

  40. Jiang H, Zhou D, Qu D, Chu G, Xu W, Song H, Xu Y (2016) Self-organized helical superstructure of photonic cellulose loaded with upconversion nanoparticles showing modulated luminescence. RSC Adv 6:76231–76236. https://doi.org/10.1039/C6RA13894B

    Article  CAS  Google Scholar 

  41. Jonoobil M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  42. Junka K, Guo J, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromol 15:876–881. https://doi.org/10.1021/bm4017176

    Article  CAS  Google Scholar 

  43. Kaiser M, Wurth C, Kraft M, Hyppanen I, Soukka T, Resch-Genger U (2017) Power-dependent upconversion quantum yield of NaYF4:Yb3+, Er3+ nano- and micrometer-sized particles—measurements and simulations. Nanoscale 9:10051–10058. https://doi.org/10.1039/C7NR02449E

    Article  CAS  PubMed  Google Scholar 

  44. Kelly JA, Shopsowitz KE, Ahn JM, Hamad WY, MacLachlan MJ (2012) Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 28:17256–17262. https://doi.org/10.1021/la3041902

    Article  CAS  PubMed  Google Scholar 

  45. Kim DY, Lee BM, Koo DH, Kang PH, Jeun JP (2016) Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose 23:3039–3049. https://doi.org/10.1007/s10570-016-1037-4

    Article  CAS  Google Scholar 

  46. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  47. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials: a review. Angew Chem Int Edit 50:5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  48. Kuznetsov S, Ermakova Y, Voronov V, Fedorov P, Busko D, Howard IA, Richards BS, Turshatov A (2018) Up-conversion quantum yield of SrF2:Yb3+, Er3+ sub-micron particles prepared by precipitation from aqueous solution. J Mater Chem C 6:598–604. https://doi.org/10.1039/c7tc04913g

    Article  CAS  Google Scholar 

  49. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  PubMed  Google Scholar 

  50. Lee BM, Jeun JP, Kang PH, Choi JH, Hong SK (2017) Isolation and characterization of nanocrystalline cellulose from different precursor materials. Fibers Polym 18:272–277. https://doi.org/10.1007/s12221-017-6548-6

    Article  CAS  Google Scholar 

  51. Li M, Li X, Xiao HN, James TD (2017) Fluorescence sensing with cellulose-based materials. ChemistryOpen 6:685–696. https://doi.org/10.1002/open.201700133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ličen M, Majaron B, Noh J, Schütz C, Bergström L, Lagerwall J, Drevenšek-Olenik I (2016) Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23:3601–3609. https://doi.org/10.1007/s10570-016-1066-z

    Article  CAS  Google Scholar 

  53. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future. EurPolym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    CAS  Article  Google Scholar 

  54. Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Biores Technol 101:2529–2536. https://doi.org/10.1016/j.biortech.2009.11.058

    Article  CAS  Google Scholar 

  55. Liu D, Wang S, Ma Z, Tian D, Gu M, Lin F (2014) Structure-color mechanism of iridescent cellulose nanocrystal films. RSC Adv 4:39322–39331. https://doi.org/10.1039/c4ra06268j

    Article  CAS  Google Scholar 

  56. Lyapin AA, Ryabochkina PA, Chabushkin AN, Ushakov SN, Fedorov PP (2015) Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level. J Lumin 167:120–125. https://doi.org/10.1016/j.jlumin.2015.06.01

    Article  Google Scholar 

  57. Lyapin AA, Kuznetsov SV, Ryabochkina PA, Merculov AP, Chernov MV, Ermakova YA, Luginina AA, Fedorov PP (2017) Upconversion luminescence of Ca1−xHoxF2+x and Sr0.98–xEr0.02HoxF2.02+x powders upon excitation by an infrared laser. Laser Phys Lett 14:076003

    Article  Google Scholar 

  58. Magyar A, Hu W, Shanley T, Flatte ME, Hu E, Aharanovich I (2014) Synthesis of luminescent europium defects in diamond. Nat Commun 5:3523

    Article  CAS  PubMed  Google Scholar 

  59. Martins MA, Teixeira EM, Corrêa AC, Ferreira M, Mattoso LHC (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864. https://doi.org/10.1007/s10853-011-5767-2

    Article  CAS  Google Scholar 

  60. Miao M, Zhao J, Feng X, Cao Y, Cao S, Zhao Y, Ge X, Sun L, Shi L, Fang J (2015) Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. J Mater Chem C 3:2511–2517. https://doi.org/10.1039/C4TC02622E

    Article  CAS  Google Scholar 

  61. Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316. https://doi.org/10.1016/j.carbpol.2016.12.050

    Article  CAS  PubMed  Google Scholar 

  62. Montanar S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671. https://doi.org/10.1021/ma048396c

    Article  CAS  Google Scholar 

  63. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394. https://doi.org/10.1007/s11837-016-2018-7

    Article  CAS  Google Scholar 

  64. Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an optical sensing platform. ACS Nano 9:7296–7305

    Article  CAS  PubMed  Google Scholar 

  65. Mu X, Gray DG (2014) Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir 30:9256–9260. https://doi.org/10.1021/la501741r

    Article  CAS  PubMed  Google Scholar 

  66. Naderi A (2017) Nanofibrillated cellulose: properties reinvestigated. Cellulose 24:1933–1945. https://doi.org/10.1007/s10570-017-1258-1

    Article  CAS  Google Scholar 

  67. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Ib and cellulose II. Carbohydr Polym 135:1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

    Article  CAS  PubMed  Google Scholar 

  68. Nedielko M, Alekseev O, Chornii V, Kovalov K, Lazarenko M, Nedilko S, Scherbatskyi V, Boyko V, Sheludko V (2018) Structure and properties of microcrystalline cellulose “ceramics-like” composites incorporated with LaVO4:Sm oxide compound. Acta Phys Pol A 133:838–842. https://doi.org/10.12693/APhysPolA.131.838

    Article  CAS  Google Scholar 

  69. Neto WPF, Putaux JL, Mariano M, Ogawa Y, Otaguro H, Pasquinia D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027. https://doi.org/10.1039/C6RA16295A

    Article  CAS  Google Scholar 

  70. Nguyen TD, Hamad WY, MacLachlan MJ (2017) Near-IR-sensitive upconverting nanostructured photonic cellulose films. Adv Opt Mater 5:1600514. https://doi.org/10.1002/adom.201600514

    Article  CAS  Google Scholar 

  71. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. https://doi.org/10.1021/ja0257319

    Article  CAS  PubMed  Google Scholar 

  72. Niu F, Li M, Huang Q, Zhang X, Pan W, Yang J, Li J (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr Polym 165:197–204. https://doi.org/10.1016/j.carbpol.2017.02.048

    Article  CAS  PubMed  Google Scholar 

  73. Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci COCIS 29:46–56. https://doi.org/10.1016/j.cocis.2017.02.002

    Article  CAS  Google Scholar 

  74. Pak AM, Ermakova JA, Kuznetsov SV, Ryabova AV, Pominova DV, Voronov VV (2017) Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based up-conversion luminophores. J Fluor Chem 194:16–22. https://doi.org/10.1016/j.jfluchem.2016.12.002

    Article  CAS  Google Scholar 

  75. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858. https://doi.org/10.1021/ma902383k

    Article  CAS  Google Scholar 

  76. Park JH, Noh JH, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JFP (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15:1477–1484. https://doi.org/10.1002/cphc.201400062

    Article  CAS  PubMed  Google Scholar 

  77. Parker RM, Guidetti G, Williams CA, Zhao T, Narkevicius A, Vignolini S, Frka-Petesic B (2017) The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv Mater 29:1704477. https://doi.org/10.1002/adma.201704477

    CAS  Article  Google Scholar 

  78. Qing Y, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102. https://doi.org/10.1007/s10570-015-0563-9

    Article  CAS  Google Scholar 

  79. Querejeta-Fernandez A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9:10377–10385. https://doi.org/10.1021/acsnano.5b04552

    Article  CAS  PubMed  Google Scholar 

  80. Querejeta-Fernández A, Chauve G, Metho M, Bouchard J, Kumacheva E (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793. https://doi.org/10.1021/ja501642p

    Article  CAS  PubMed  Google Scholar 

  81. Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Paper Sci 24:146–149

    CAS  Google Scholar 

  82. Ritter B, Krahl T, Scholz G, Kemnitz E (2016) Local structures of solid solutions Sr1−xYxF2+x (x = 0…0.5) with fluorite structure prepared by sol-gel and mechanochemical syntheses. J Phys Chem C 120:8992–8999. https://doi.org/10.1021/acs.jpcc.6b01834

    Article  CAS  Google Scholar 

  83. Rozhnova YA, Luginina AA, Voronov VV, Ermakov RP, Kuznetsov SV, Ryabova AV, Pominova DV, Arbenina VV, Osiko VV, Fedorov PP (2014) White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. Mater Chem Phys 148:201–207

    Article  CAS  Google Scholar 

  84. Rozhnova YA, Kuznetsov SV, Luginina AA, Voronov VV, Ryabova AV, Pominova DV, Ermakov RP, Usachev VA, Kononenko NE, Baranchikov AE, Ivanov VK, Fedorov PP (2016) New Sr1−x−zRx(NH4)zF2+x−z (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Mater Chem Phys 172:150–157. https://doi.org/10.1016/j.matchemphys.2016.01.055

    Article  CAS  Google Scholar 

  85. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci COCIS 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003

    Article  CAS  Google Scholar 

  86. Sedov VS, Kuznetsov SV, Ralchenko VG, Mayakova MN, Krivobok VS, Savin SS, Martyanov AK, Romanishkin ID, Khomich AA, Fedorov PP, Konov VI (2017) Diamond-EuF3 nanocomposites with bright orange photoluminescence. Diam Relat Mater 72:47–52. https://doi.org/10.1016/j.diamond.2016.12.022

    Article  CAS  Google Scholar 

  87. Shanmugam K, Doosthosseini H, Varanasi S, Garnier G, Batchelor W (2018) Flexible spray coating process for smooth nanocellulose film production. Cellulose 25:1725–1741. https://doi.org/10.1007/s10570-018-1677-

    Article  CAS  Google Scholar 

  88. Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. J Angew Chem Int Ed 50:10991–10995. https://doi.org/10.1002/anie.201105479

    Article  CAS  Google Scholar 

  89. Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. J Angew Chem Int Ed 51:6886–6890. https://doi.org/10.1002/anie.201201113

    Article  CAS  Google Scholar 

  90. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  91. Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032. https://doi.org/10.1021/acs.biomac.6b00910

    Article  CAS  Google Scholar 

  92. Sun B, Zhang M, Hou Q, Liu R, Wu T, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450. https://doi.org/10.1007/s10570-015-0803-z

    Article  CAS  Google Scholar 

  93. Sun X, Wu Q, Zhang X, Ren S, Lei T, Li W, Xu G, Zhang Q (2018) Zhang Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose 25:1103–1115. https://doi.org/10.1007/s10570-017-1627-9

    Article  CAS  Google Scholar 

  94. Tardy BL, Ago M, Guo J, Borghei M, Kämäräinen T, Rojas OJ (2017) Optical properties of self-assembled cellulose nanocrystals films suspended at planar–symmetrical interfaces. Small 13:1702084. https://doi.org/10.1002/smll.201702084

    Article  CAS  Google Scholar 

  95. Vicente AT, Araújo A, Mendes MJ, Nunes D, Oliveira MJ, Sanchez-Sobrado O, Ferreira MP, Águas H, Fortunato E, Martins R (2018) Multifunctional cellulose-paper for light harvesting and smart sensing applications. J Mater Chem C 6:3143–3181. https://doi.org/10.1039/C7TC05271E

    Article  Google Scholar 

  96. Wilts BD, Dumanli AG, Middleton R, Vukusic P, Vignolini S (2017) Chiral optics of helicoidal cellulose nanocrystal films. APL Photonics 2:040801. https://doi.org/10.1063/1.4978387

    Article  CAS  Google Scholar 

  97. Wu CN, Yang Q, Takeuchi M, Saito T, Isogai A (2014) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6:392–399. https://doi.org/10.1039/C3NR04102F

    Article  CAS  PubMed  Google Scholar 

  98. Xue J, Song F, Yin X, Wang X, Wang Y (2015) Let it shine: a transparent and photoluminescent foldable nanocellulose/quantum dot paper. ACS Appl Mater Interfaces 7:10076–10079. https://doi.org/10.1021/acsami.5b02011

    Article  CAS  PubMed  Google Scholar 

  99. Xue B, Zhang Z, Sun Y, Wang J, Jiang H, Du M, Chi C, Li X (2018) Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter. Carbohydr Polym 186:176–183. https://doi.org/10.1016/j.carbpol.2017.12.088

    Article  CAS  PubMed  Google Scholar 

  100. Yagoub MYA, Swart HC, Noto LL, O’Connel JH, Lee ME, Coetsee E (2014) The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor. J Lumin 156:150–156. https://doi.org/10.1016/j.jlumin.2014.08.014

    Article  CAS  Google Scholar 

  101. Yagoub MYA, Swart HC, Coetsee E (2015) Concentration quenching, surface and spectral analyses of SrF2:Pr3+ prepared by different synthesis techniques. Opt Mat 42:204–209. https://doi.org/10.1016/j.optmat.2015.01.011

    Article  CAS  Google Scholar 

  102. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3 + , phosphors of controlled size and morphology. Adv Mater 17:2119–2123

    Article  CAS  Google Scholar 

  103. Zhang Z, Chang H, Xue B, Han Q, Lü X, Zhang S, Li X, Zhu X, Wong W, Li K (2017) New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose. Opt Mat 73:747–753. https://doi.org/10.1016/j.optmat.2017.09.039

    Article  CAS  Google Scholar 

  104. Zhang L, Lyu S, Chen Z, Wang S (2018) Fabrication flexible and luminescent nanofibrillated cellulose films with modified SrAl2O4: Eu, Dy phosphors via nanoscale silica and aminosilane. Nanomaterials 8:352–366. https://doi.org/10.3390/nano8050352

    Article  CAS  PubMed Central  Google Scholar 

  105. Zhao J, Wei Z, Feng X, Miao M, Sun L, Cao S, Shi L, Fang J (2014) Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticles grafted nanofibrillated cellulose derived from garlic skin. ACS Appl Mater Interfaces 6:14945–14951. https://doi.org/10.1021/am5026352

    Article  CAS  PubMed  Google Scholar 

  106. Zor E (2018) Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. Talanta 184:149–155. https://doi.org/10.1016/j.talanta.2018.02.096

    Article  CAS  PubMed  Google Scholar 

  107. Zor E, SabriAlpaydin S, Arici A, Muhammed EsadSaglam ME, Bingol H (2018) Photoluminescentnanopaper-based microcuvette for iodide detection in seawater. Sens Actuators B Chem 254:1216–1224. https://doi.org/10.1016/j.snb.2017.07.208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Polycell LLC for providing powdered cellulose PCC-0.25 sample and Biokhim LLC for providing Avicel PC105 microcrystalline cellulose sample. The support from Russian Foundation for Basic Research (Grant 16-29-11784-ofi-m) is greatly acknowledged. Authors express their sincere gratitude to Richard L. Simoneaux, and Elena V. Chernova for their most kind assistance in the preparation of the present manuscript and Vladimir N. Kryazhev for polymerization degree analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1491 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.P., Luginina, A.A., Kuznetsov, S.V. et al. Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles. Cellulose 26, 2403–2423 (2019). https://doi.org/10.1007/s10570-018-2194-4

Download citation

Keywords

  • Cellulose nanocrystals
  • Cellulose nanofibrils
  • Nanocomposites
  • SrF2:Ho3+
  • Up-conversion luminescent films