Skip to main content
Log in

PDA-assisted one-pot fabrication of bioinspired filter paper for oil–water separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Inspired by the robust and durable adhesion of mussels, highly hydrophobic filter paper was fabricated by a polydopamine (PDA)-assisted one-pot procedure using silica nanoparticles and silane coupling agent (hexadecyltrimethoxysilane, HDTMS) as coating materials at ambient temperature. The surface chemistry, morphology, and hydrophobicity of the coated filter paper were measured by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscopy, and water contact angle. The capacity, durability, and recyclability of the coated filter paper were evaluated by the separation of oil–water mixtures and emulsions. The coated filter paper is highly hydrophobic with a water contact angle of > 130°. The coatings with enhanced adhesion to the substrate resisted mechanical abrasion without significant loss of hydrophobicity, which suggested that PDA plays a crucial role in improving the adhesion of silica nanoparticles to the paper surface. The coated filter paper showed high oil–water separation efficiency up to 95%, and maintained high hydrophobicity after recycling over 10 cycles. The coated filter paper that is based on a simple, low cost, and environmentally friendly procedure exhibits potential for applications in oil-recovery and oil–water separation materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Borges J, Mano JF (2014) Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114:8883–8942

    Article  CAS  PubMed  Google Scholar 

  • Chauhan GS, Guleria L, Sharma R (2005) Synthesis, characterization and metal ion sorption studies of graft copolymers of cellulose with glycidyl methacrylate and some comonomers. Cellulose 12:97–110

    Article  CAS  Google Scholar 

  • Cheng Q, Guan C, Wang M, Li Y, Zeng J (2018) Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydr Polym 199:390–396

    Article  CAS  PubMed  Google Scholar 

  • Crick CR, Bear JC, Southern P, Parkin IP (2013) A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition. J Mater Chem A 1:4336–4344

    Article  CAS  Google Scholar 

  • Fan JB, Song Y, Wang S, Meng J, Yang G, Guo X, Feng L, Jiang L (2015) Directly coating hydrogel on filter paper for effective oil–water separation in highly acidic, alkaline, and salty environment. Adv Funct Mater 25:5368–5375

    Article  CAS  Google Scholar 

  • Fu S, Zhou H, Wang H, Ding J, Liu S, Zhou Y, Niu H, Rutledge GC, Lin T (2018) Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings. RSC Adv 8:717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Wen Q, Peng Y, Guo Z (2017) Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. J Mater Chem A 5:21866–21874

    Article  CAS  Google Scholar 

  • Hu X, Ke Y, Zhao Y, Yu C, Lu S, Peng F (2018) Preparation and properties of nanocomposites of β-cyclodextrin-functionalized polyacrylamide and its application for enhancing oil recovery. RSC Adv 8:30491–30501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Zhao S, Wang Z, Wu J, Wang J, Wang S (2016) In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J Membr Sci 499:269–281

    Article  CAS  Google Scholar 

  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Tiwari B, Zhang D, Yap YK (2017) Water purification: oil–water separation by nanotechnology and environmental concerns. Environ Sci Nano 4:514–525

    Article  CAS  Google Scholar 

  • Lei S, Shi Z, Ou J, Wang F, Xue M, Li W, Qiao G, Guan X, Zhang J (2017) Durable superhydrophobic cotton fabric for oil/water separation. Colloids Surf A 533:249–254

    Article  CAS  Google Scholar 

  • Li J, Xu C, Zhang Y, Wang R, Zha F, She H (2016a) Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J Mater Chem A 4:15546–15553

    Article  CAS  Google Scholar 

  • Li J, Yan L, Tang X, Feng H, Hu D, Zha F (2016b) Robust superhydrophobic fabric bag filled with polyurethane sponges used for vacuum-assisted continuous and ultrafast absorption and collection of oils from water. Adv Mater Interfaces 3:1500770

    Article  CAS  Google Scholar 

  • Li Z, Qiu J, Yuan S, Luo Q, Pei C (2017) Rapidly degradable and sustainable polyhemiaminal aerogels for self-driven efficient separation of oil/water mixture. Ind Eng Chem Res 56:6508–6514

    Article  CAS  Google Scholar 

  • Li J, Xu C, Guo C, Tian H, Zha F, Guo L (2018a) Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux. J Mater Chem A 6:223–230

    Article  CAS  Google Scholar 

  • Li Z, Qiu J, Shi Y, Pei C (2018b) Wettability-switchable bacterial cellulose/polyhemiaminal nanofiber aerogels for continuous and effective oil/water separation. Cellulose 25:2987–2996

    Article  CAS  Google Scholar 

  • Liu Y, Ai K, Lu L (2014a) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chang C, Sun T (2014b) Dopamine-assisted deposition of dextran for nonfouling applications. Langmuir 30:3118–3126

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhou H, Wang H, Zhao Y, Shao H, Xu Z, Feng Z, Liu D, Lin T (2017) Argon plasma treatment of fluorine-free silane coatings: a facile, environment-friendly method to prepare durable, superhydrophobic fabrics. Adv Mater Interfaces 4:1700027

    Article  CAS  Google Scholar 

  • Luo C, Liu Q (2017) Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. ACS Appl Mater Interfaces 9:8297–8307

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Duan C, Li Y, Wang Y, Wang B (2018) A glucose modified filter paper for effective oil/water separation. RSC Adv 8:29570–29577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv N, Wang X, Peng S, Luo L, Zhou R (2018) Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation. RSC Adv 8:30257–30264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogihara H, Xie J, Okagaki J, Saji T (2012) Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28:4605–4608

    Article  CAS  PubMed  Google Scholar 

  • Phanthong P, Reubroycharoen P, Kongparakul S, Samart C, Wang Z, Hao X, Abudula A, Guan G (2018) Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym 190:184–189

    Article  CAS  PubMed  Google Scholar 

  • Rafieian F, Hosseini M, Jonoobi M, Yu Q (2018) Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25:4695–4710

    Article  CAS  Google Scholar 

  • Rostami A, Sharifnia S (2017) Fabrication of robust and durable superhydrophobic fiberglass fabrics for oil–water separation based on self-assembly of novel N-TESPO and N-TESPS reagents. J Mater Chem A 5:680–688

    Article  CAS  Google Scholar 

  • Ruan C, Ai K, Li X, Lu LA (2014) Superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed 53:5556–5560

    Article  CAS  Google Scholar 

  • Schrope M (2011) Deep wounds. Nature 472:152–154

    Article  CAS  PubMed  Google Scholar 

  • Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701

    Article  CAS  PubMed  Google Scholar 

  • Shanon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification on the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  • Shao L, Wang ZX, Zhang YL, Jiang ZX, Liu YY (2014) A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J Membr Sci 461:10–21

    Article  CAS  Google Scholar 

  • Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang CA (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70

    Article  CAS  Google Scholar 

  • Si Y, Guo Z (2015) Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale 7:5922–5946

    Article  CAS  PubMed  Google Scholar 

  • Si Y, Fu QX, Wang XQ, Zhu J, Yu JY, Sun G, Ding B (2015) Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9:3791–3799

    Article  CAS  PubMed  Google Scholar 

  • Songok J, Toivakka M (2016) Enhancing capillary-driven flow for paper-based microfluidic channels. ACS Appl Mater Interfaces 8:30523–30530

    Article  CAS  PubMed  Google Scholar 

  • Sung YH, Kim YD, Choi HJ, Shin R, Kang S, Lee H (2015) Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films. Appl Surf Sci 349:169–173

    Article  CAS  Google Scholar 

  • Tang X, Nan S, Wang T, Chen Y, Yu F, Zhang G, Pei M (2013) Facile strategy for fabrication of transparent superhydrophobic coatings on the surface of paper. RSC Adv 3:15571–15575

    Article  CAS  Google Scholar 

  • Tang X, Shen C, Zhu W, Zhang S, Xu Y, Yang Y, Gao M, Dong F (2017) A facile procedure to modify filter paper for oil–water separation. RSC Adv 7:30495–30499

    Article  CAS  Google Scholar 

  • Wang S, Li M, Lu Q (2010) Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl Mater Interfaces 2:677–683

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jiang X, Cheng X, Lau CH, Shao L (2015a) Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion. ACS Appl Mater Interfaces 7:9534–9545

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu Y, Liu Y, Shao L (2015b) A novel mussel-inspired strategy toward superhydrophobic surface for self-driven oil spill cleanup. J Mater Chem A 3:12171–12178

    Article  CAS  Google Scholar 

  • Wang ZJ, Wang Y, Liu GJ (2016) Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angew Chem Int Ed 55:1291–1294

    Article  CAS  Google Scholar 

  • Wang H, Zhou H, Liu S, Shao H, Fu S, Rutledge GC, Lin T (2017) Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC Adv 7:33986–33993

    Article  CAS  Google Scholar 

  • Wei Q, Haag R (2015) Universal polymer coatings and their representative biomedical applications. Mater Horiz 2:567–577

    Article  CAS  Google Scholar 

  • Xiang Y, Liu F, Xue L (2015) Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation. J Membr Sci 476:321–329

    Article  CAS  Google Scholar 

  • Xue CH, Li YR, Zhang P, Ma JZ, Jia ST (2014) Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl Mater Interfaces 6:10153–10161

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yi H, Wang C (2015) Oil absorbents based on melamine/lignin by a dip adsorbing method. ACS Sustain Chem Eng 3:3012–3018

    Article  CAS  Google Scholar 

  • Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  CAS  PubMed  Google Scholar 

  • Yue X, Zhang T, Yang D, Qiu F, Zhu Y, Fang J (2018) In situ fabrication dynamic carbon fabrics membrane with tunable wettability for selective oil–water separation. J Ind Eng Chem 61:188–196

    Article  CAS  Google Scholar 

  • Zhang W, Liu N, Cao Y, Chen Y, Zhang Q, Lin X, Qu R, Li H, Feng L (2016) Polyacyamide-polydivinylbenzene decorated membrane for sundry stabilized emulsions separation via a facile solvothermal method. ACS Appl Mater Interfaces 8:21816–21823

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ma MQ, Chen TT, Zhang H, Hu DF, Wu BH, Ji J, Xu ZK (2017) Dopamine-triggered one-step polymerization and codeposition of acrylate monomers for functional coatings. ACS Appl Mater Interfaces 9:34356–34366

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wang H, Niu H, Lin T (2015) Electrospun fibrous membranes with super-large-strain electric superhydrophobicity. Sci Rep 5:15863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4:6409–6416

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Niu H, Zhao Y, Xu Z, Lin T (2017) A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv Funct Mater 27:1604261

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Yang W, Niu H, Wei X, Fu S, Liu S, Shao H, Lin T (2018) Durable superoleophobic–superhydrophilic fabrics with high anti-oil-fouling property. RSC Adv 8:26939–26947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Shandong Provincial Natural Science Foundation of China (Grant No. 2016ZRB01232), Shandong Provincial Science and Technology Development Plan Project of China (2017GGX20128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinde Tang.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Wang, X., Tang, C. et al. PDA-assisted one-pot fabrication of bioinspired filter paper for oil–water separation. Cellulose 26, 1355–1366 (2019). https://doi.org/10.1007/s10570-018-2144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2144-1

Keywords