Skip to main content

Advertisement

Log in

Antifungal activity of combined treatments of active methylcellulose-based films containing encapsulated nanoemulsion of essential oils and γ–irradiation: in vitro and in situ evaluations

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microfluidization was used to develop methyl cellulose (MC)/cellulose nanocrystal CNC based nanocomposite films containing a plant essential oil (EO) blend (oregano: thyme) emulsion. A three factorial experimental design was used to systematically optimize the microfluidization pressure based on size and antifungal activity of the prepared emulsion. Results showed that microfluidization of the film forming dispersions provide a novel approach for the development of high strength bionanocomposite films. Incorporation of 7.5% CNC into MC containing 0.50–0.75% EO and application of a pressure of 15 k psi (103 MPa) created a nanoemulsion with particle size ≤ 100 nm which exhibited significant antifungal activity in vitro against Aspergillus niger, A. flavus, A. parasiticus and P. chrysogenum. In situ tests with MC/CNC based bioactive films containing EO emulsion produced a 2 log reduction in fungal growth in infected rice during 8 weeks of storage at 28 °C. Methyl cellulose nanocomposite films containing EOs nanoemulsion showed a slow release (35%) of volatile component over 12 weeks of storage period. The addition of CNC as reinforcing filler improved the tensile strength of the MC based films by 30% and decreased water barrier and release properties by 9 and 25% respectively. In addition, combined treatment of bioactive films with an irradiation treatment at 750 Gy showed more pronounced antifungal and mechanical properties than treatment with the bioactive film or irradiation alone. These results show the potential for EO-loaded methyl cellulose-based films to prolong shelf life of food products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akter N, Khan RA, Salmieri S, Sharmin N, Dussault D, Lacroix M (2012) Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation. Radiat Phys Chem 81:995–998. https://doi.org/10.1016/j.radphyschem.2011.10.029

    Article  CAS  Google Scholar 

  • Asmawati et al. (2014) Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. In: AIP conference proceedings, vol 1. AIP, pp 244–250

  • Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62. https://doi.org/10.1016/j.tifs.2015.12.001

    Article  CAS  Google Scholar 

  • Avila-Sosa R, Palou E, Jiménez Munguía MT, Nevárez-Moorillón GV, Navarro Cruz AR, López-Malo A (2012) Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int J Food Microbiol 153:66–72

    Article  CAS  PubMed  Google Scholar 

  • Azarbayjani AF, Jouyban A, Chan SY (2009) Impact of surface tension in pharmaceutical sciences. J Pharm Pharm Sci 12:218–228

    Article  Google Scholar 

  • Bai L, McClements DJ (2016) Development of microfluidization methods for efficient production of concentrated nanoemulsions: comparison of single-and dual-channel microfluidizers. J Colloid Interface Sci 466:206–212

    Article  CAS  PubMed  Google Scholar 

  • Barzegar M, Ghaderi Ghahfarokhi M, Sahari M, Azizi M (2016) Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles. J Agric Sci Technol 18:1781–1792

    Google Scholar 

  • Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43:149–154

    Article  CAS  PubMed  Google Scholar 

  • Benbettaïeb N, Chambin O, Karbowiak T, Debeaufort F (2016) Release behavior of quercetin from chitosan-fish gelatin edible films influenced by electron beam irradiation. Food Control 66:315–319

    Article  CAS  Google Scholar 

  • Ben-Fadhel Y, Saltaji S, Khlifi MA, Salmieri S, Vu KD, Lacroix M (2017) Active edible coating and γ-irradiation as cold combined treatments to assure the safety of broccoli florets (Brassica oleracea L.). Int J Food Microbiol 241:30–38

    Article  CAS  PubMed  Google Scholar 

  • Boumail A, Salmieri S, Klimas E, Tawema PO, Bouchard J, Lacroix M (2013) Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose-polycaprolactone composites. J Agric Food Chem 61:811–821

    Article  CAS  PubMed  Google Scholar 

  • Campos D, Piccirillo C, Pullar RC, Castro PM, Pintado MM (2014) Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry. J Sci Food Agric 94:2097–2103

    Article  CAS  PubMed  Google Scholar 

  • Chouhan S, Sharma K, Guleria S (2017) Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 4:58

    Article  CAS  PubMed Central  Google Scholar 

  • Cran MJ, Rupika L, Sonneveld K, Miltz J, Bigger SW (2010) Release of naturally derived antimicrobial agents from LDPE films. J Food Sci 75:E126–E133

    Article  CAS  PubMed  Google Scholar 

  • Criado P, Fraschini C, Jamshidian M, Salmieri S, Safrany A, Lacroix M (2017) Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties. Cellulose 24:2111–2124

    Article  CAS  Google Scholar 

  • Del Nobile M, Conte A, Incoronato A, Panza O (2008) Antimicrobial efficacy and release kinetics of thymol from zein films. J Food Eng 89:57–63

    Article  Google Scholar 

  • Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395. https://doi.org/10.1002/pen.24127

    Article  CAS  Google Scholar 

  • El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167. https://doi.org/10.1016/j.carbpol.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  • El Miri N et al (2016) Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydr Polym 137:239–248. https://doi.org/10.1016/j.carbpol.2015.10.072

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E et al (2012a) b) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605. https://doi.org/10.1016/j.carbpol.2011.09.066

    Article  CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012b) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956. https://doi.org/10.1016/j.carbpol.2012.06.025

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng https://doi.org/10.1016/j.jfoodeng.2013.03.025

  • Garcia-Garcia D, Lopez-Martinez J, Balart R, Strömberg E, Moriana R (2018) Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) thermoplastic blend. Eur Polym J 104:10–18

    Article  CAS  Google Scholar 

  • Hossain F, Follett P, Vu KD, Salmieri S, Senoussi C, Lacroix M (2014) Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination. Food Control 45:156–162

    Article  CAS  Google Scholar 

  • Hossain F, Follett P, Vu KD, Harich M, Salmieri S, Lacroix M (2016) Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol 53:24–30

    Article  CAS  PubMed  Google Scholar 

  • Hossain F, Follett P, Salmieri S, Vu KD, Jamshidian M, Lacroix M (2017) Perspectives on essential oil–loaded nanodelivery packaging technology for controlling stored cereal and grain pests. In: Nollet LML, Rathore HS (eds) Green pesticides handbook essential oils for pest control. Routledge, Abingdon, pp 487–508

    Chapter  Google Scholar 

  • Hubbe MA, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas OJ (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. Bioresources 12:2143–2233

    CAS  Google Scholar 

  • Huq T et al (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Huq T, Vu KD, Riedl B, Bouchard J, Lacroix M (2015) Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiol 46:507–514. https://doi.org/10.1016/j.fm.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  • Hussain PR, Suradkar PP, Wani AM, Dar MA (2015) Retention of storage quality and post-refrigeration shelf-life extension of plum (Prunus domestica L.) cv. Santa Rosa using combination of carboxymethyl cellulose (CMC) coating and gamma irradiation. Radiat Phys Chem 107:136–148

    Article  CAS  Google Scholar 

  • Inouye S, Uchida K, Maruyama N, Yamaguchi H, Abe S (2006) A novel method to estimate the contribution of the vapor activity of essential oils in agar diffusion assay. Jpn J Med Mycol 47:91–98

    Article  CAS  Google Scholar 

  • Jafari SM, He Y, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9:475–485

    Article  CAS  Google Scholar 

  • Jo Y-J, Kwon Y-J (2014) Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci Biotechnol 23:107–113

    Article  CAS  Google Scholar 

  • Jo C, Kang H, Lee NY, Kwon JH, Byun MW (2005) Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat Phys Chem 72:745–750. https://doi.org/10.1016/j.radphyschem.2004.05.045

    Article  CAS  Google Scholar 

  • Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014a) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Vu KD, Chauve G, Bouchard J, Riedl B, Lacroix M (2014b) Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21:3457–3468

    Article  CAS  Google Scholar 

  • Lacroix M, Follett P (2015) Combination irradiation treatments for food safety and phytosanitary uses. Stewart Postharvest Rev 11:1–10

    Google Scholar 

  • Lee HJ, Ryu D (2017) Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem 65:7034–7051

    Article  CAS  PubMed  Google Scholar 

  • Mascheroni E, Guillard V, Gastaldi E, Gontard N, Chalier P (2011) Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers. Food Control 22:1582–1591

    Article  CAS  Google Scholar 

  • Mihaly CA et al (2015) Preparation and characterization of improved gelatin films incorporating hemp and sage oils. Food Hydrocoll 49:144–155. https://doi.org/10.1016/j.foodhyd.2015.03.022

    Article  CAS  Google Scholar 

  • Ndiaye D, Tidjani A (2014) Physical changes associated with gamma doses on wood/polypropylene composites. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, Bristol

  • Nleya N, Adetunji MC, Mwanza M (2018) Current status of mycotoxin contamination of food commodities in Zimbabwe. Toxins 10:89–100

    Article  CAS  PubMed Central  Google Scholar 

  • Nostro A, Scaffaro R, D’Arrigo M, Botta L, Filocamo A, Marino A, Bisignano G (2012) Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl Microbiol Biotechnol 96:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O (2014) Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr 1:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira PM, Zannini E, Arendt EK (2014) Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiol 37:78–95

    Article  CAS  PubMed  Google Scholar 

  • Otoni CG, Pontes SF, Medeiros EA, Soares NdF (2014) Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem 62:5214–5219

    Article  CAS  PubMed  Google Scholar 

  • Partheniadis I, Karakasidou P, Vergkizi S, Nikolakakis I (2017) Spectroscopic examination and release of microencapsulated oregano essential oil. ADMET DMPK 5:224–233

    Article  Google Scholar 

  • Patil DK, Agrawal DS, Mahire RR, More DH (2016) Synthesis, characterization and controlled release studies of ethyl cellulose microcapsules incorporating essential oil using an emulsion solvent evaporation method. Am J Essent Oils Natl Prod 4:23–31

    Google Scholar 

  • Prakash B, Kedia A, Mishra PK, Dubey NK (2015) Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—potentials and challenges. Food Control 47:381–391. https://doi.org/10.1016/j.foodcont.2014.07.023

    Article  CAS  Google Scholar 

  • Ramos Santonja M, Beltrán Sanahuja A, Valdés García A, Peltzer MA, Jiménez A, Garrigós Selva MDC, Zaikov G (2013) Carvacrol and thymol for fresh food packaging. J Bioequiv Bioavailab 5:154–160

    Google Scholar 

  • Ribeiro-Santos R, Andrade M, Sanches-Silva A (2017) Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr Opin Food Sci 14:78–84

    Article  Google Scholar 

  • Salmieri S et al (2014) Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 21:4271–4285. https://doi.org/10.1007/s10570-014-0406-0

    Article  CAS  Google Scholar 

  • Salmieri S, Khan RA, Safrany A, Lacroix M (2015) Gamma rays-induced 2-hydroxyethyl methacrylate graft copolymerization on methylcellulose-based films: structure analysis and physicochemical properties. Ind Crops Prod 70:64–71

    Article  CAS  Google Scholar 

  • Saurabh CK, Gupta S, Bahadur J, Mazumder S, Variyar PS, Sharma A (2013) Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films. Carbohydr Polym 98:1610–1617. https://doi.org/10.1016/j.carbpol.2013.07.041

    Article  CAS  PubMed  Google Scholar 

  • Takala PN, Salmieri S, Vu KD, Lacroix M (2011) Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets. Rad Phys Chem 80:1414–1418

    Article  CAS  Google Scholar 

  • Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Sci Technol 44:465–472

    Article  CAS  Google Scholar 

  • Turgis M, Borsa J, Millette M, Salmieri S, Lacroix M (2008) Effect of selected plant essential iols or their constituents and modified atmosphere packaging on the radiosensitivity of Escherichia coli O157:h7 and Salmonella Typhi in ground beef. J Food Prot 71:516–521

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, An X, Zhu X, Cheng X, Dong C, Zheng L, Nasrallah JE (2016) Improving the colloidal stability of Cellulose nano-crystals by surface chemical grafting with polyacrylic acid. J Bioresour Bioprod 1:114–119

    Google Scholar 

  • Yang W et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12. https://doi.org/10.1016/j.eurpolymj.2016.04.003

    Article  CAS  Google Scholar 

  • Yildirim S et al (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17:165–199

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to The Ministère de l’Enseignement Supérieur, de la Recherche, de la Science et de la Technologie, the Natural Sciences and Engineering Research Council (NSERC) of Canada and the United States Department of Agriculture-Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, for supporting this research. IAEA is also acknowledged for financial support through the research coordinating meeting (RCM no: F22063). The authors also acknowledge Nordion Inc. for providing γ irradiation treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lacroix.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, F., Follett, P., Vu, K.D. et al. Antifungal activity of combined treatments of active methylcellulose-based films containing encapsulated nanoemulsion of essential oils and γ–irradiation: in vitro and in situ evaluations. Cellulose 26, 1335–1354 (2019). https://doi.org/10.1007/s10570-018-2135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2135-2

Keywords

Navigation