Skip to main content
Log in

Preparation and dielectric properties of porous cyanoethyl cellulose membranes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cyanoethyl cellulose (CEC) with a high degree of substitution of cyanoethyl group was synthesized by using the Michael addition reaction. Porous CEC membranes were successfully prepared by the non-solvent induced phase separation method. The parameters that influence the morphology and properties of the CEC membranes were investigated and discussed. Asymmetric membranes with higher porosity were obtained when water was used for the coagulation bath. On the other hand, dense symmetric CEC membranes with cellular or flat pores were obtained when ethanol or DMF/H2O was used for the coagulation bath. The porosity of the CEC membranes was reduced with increased polymer concentration in the CEC/DMF solutions. Moreover, the morphology of CEC membranes also depended on the molecular weight of CEC. In the case of using water as the coagulation bath, the morphology of the CEC membranes changed from an asymmetric structure with dense thin skin layer to a stick-like intertwined symmetric structure. When ethanol or DMF/H2O was used for the coagulation bath, the morphology of the resultant symmetric CEC membranes changed from cellular or flat pores to stick-like intertwined structure. The dielectric constant of the CEC membranes increased with a decrease in the porosity of CEC membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abed MRM, Kumbharkar SC, Groth AM, Li K (2012) Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique. J Membr Sci 407:145–154

    Article  CAS  Google Scholar 

  • Ahmad AL, Ramli WKW (2013) Hydrophobic PVDF membrane via two-stage soft coagulation bath system for membrane gas absorption of CO2. Sep Purif Technol 103:230–240

    Article  CAS  Google Scholar 

  • Bottino A, Cameraroda G, Capannelli G, Munari S (1991) The formation of microporous polyvinylidene difluoride membranes by phase-separation. J Membr Sci 57:1–20

    Article  CAS  Google Scholar 

  • Buonomenna MG, Macchi P, Davoli M, Drioli E (2007) Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 43:1557–1572

    Article  CAS  Google Scholar 

  • Cao C et al (2014) Wool graft polyacrylamidoxime as the adsorbent for both cationic and anionic toxic ions from aqueous solutions. RSC Adv 4:60609–60616

    Article  CAS  Google Scholar 

  • Cao C, Kang HL, Li PP, Zhang C, Li WW, Huang Y, Liu RG (2016) Adsorption of fluorinion on polyacrylamidoxime decorated wool and the mechanism. Acta Polym Sin. https://doi.org/10.11777/j.issn1000.3304.2016.15246

    Article  Google Scholar 

  • Chakrabarty B, Ghoshal AK, Purkait MK (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membr Sci 309:209–221

    Article  CAS  Google Scholar 

  • Chang HH, Chang LK, Yang CD, Lin DJ, Cheng LP (2017) Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths. Polymer 115:164–175

    Article  CAS  Google Scholar 

  • Chen JJ, Kong XQ, Sumida K, Manumpil MA, Long JR, Reimer JA (2013) Ex situ NMR relaxometry of metal-organic frameworks for rapid surface-area screening. Angew Chem Int Ed 52:12043–12046

    Article  CAS  Google Scholar 

  • Chen ZL, Rana D, Matsuura T, Yang YF, Lan CQ (2014) Study on the structure and vacuum membrane distillation performance of PVDF composite membranes: I. Influence of blending. Sep Purif Technol 133:303–312

    Article  CAS  Google Scholar 

  • Chen MY, Kang HL, Gong YM, Guo J, Zhang H, Liu RG (2015a) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Rana D, Matsuura T, Meng D, Lan CQ (2015b) Study on structure and vacuum membrane distillation performance of PVDF membranes: II. Influence of molecular weight. Chem Eng J 276:174–184

    Article  CAS  Google Scholar 

  • Chun KY, Jang SH, Kim HS, Kim YW, Han HS, Joe YI (2000) Effects of solvent on the pore formation in asymmetric 6FDA-4,4′ ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors. J Membr Sci 169:197–214

    Article  CAS  Google Scholar 

  • Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90:3804

    Google Scholar 

  • Eykens L, De Sitter K, Stoops L, Dotremont C, Pinoy L, Van der Bruggen B (2017) Development of polyethersulfone phase-inversion membranes for membrane distillation using oleophobic coatings. J Appl Polym Sci 134:45516

    Article  CAS  Google Scholar 

  • Fadhil S et al (2016) Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem Eng Process 102:16–26

    Article  CAS  Google Scholar 

  • Guillen GR, Pan YJ, Li MH, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817

    Article  CAS  Google Scholar 

  • Jia C, Shao ZQ, Fan HY, Wang JQ (2015) Preparation and dielectric properties of cyanoethyl cellulose/BaTiO3 flexible nanocomposite films. RSC Adv 5:15283–15291

    Article  CAS  Google Scholar 

  • Jia C et al (2016) Barium titanate as a filler for improving the dielectric property of cyanoethyl cellulose/antimony tin oxide nanocomposite films. Compos A Appl Sci Manuf 86:1–8

    Article  CAS  Google Scholar 

  • Jin RG, Hua YQ (2013) Polymer physics, 4th edn. Chemical Industry Publisher, Beijing (in Chinese)

    Google Scholar 

  • Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper(II) ions. J Appl Polym Sci 100:329–334

    Article  CAS  Google Scholar 

  • Kang HL, Liu RG, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16

    Article  CAS  Google Scholar 

  • Kang HL, Liu RG, Huang Y (2016) Cellulose-based gels. Macromol Chem Phys 217:1322–1334

    Article  CAS  Google Scholar 

  • Kuo CY, Lin HN, Tsai HA, Wang DM, Lai JY (2008) Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233:40–47

    Article  CAS  Google Scholar 

  • Levitt MH (2007) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Li WW, Liu RG, Kang HL, Sun YM, Dong FY, Huang Y (2013) Synthesis of amidoxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4:2556–2563

    Article  CAS  Google Scholar 

  • Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP (2006) Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur Polym J 42:1581–1594

    Article  CAS  Google Scholar 

  • Matsui H, Shiraishi N (2000) Dielectric properties of cyanoethyl cellulose grafted with fluorine-containing acrylates. Mokuzai Gakkaishi 46:468–474

    CAS  Google Scholar 

  • Matsuura T (1994) Synthetic membranes and membrane separation processes. CRC Press, Boca Raton

    Google Scholar 

  • Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ (2014) Low-field permanent magnets for industrial process and quality control. Prog Nucl Magn Reson Spectrosc 76:1–60

    Article  CAS  PubMed  Google Scholar 

  • Morooka T, Norimoto M, Yamada T (1986) Cyanoethylated cellulose prepared by homogeneous reaction in paraformaldehyde-DMSO system. J Appl Polym Sci 32:3575–3587

    Article  CAS  Google Scholar 

  • Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP (2004) Influence of processing conditions on the properties of ultrafiltration membranes. J Membr Sci 231:209–224

    Article  CAS  Google Scholar 

  • Nakayama E, Azuma JI (1998) Substituent distribution of cyanoethyl cellulose. Cellulose 5:175–185

    Article  CAS  Google Scholar 

  • Pu WH, He XM, Wang L, Jiang CY, Wan CR (2006) Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 272:11–14

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Mansourpanah Y (2007) High performance polyethersulfone UF membrane for manufacturing spiral wound module: preparation, morphology, performance, and chemical cleaning. Polym Adv Technol 18:403–410

    Article  CAS  Google Scholar 

  • Saad GR (1994) Dielectric behavior of cyanoethylated cellulose. Polym Int 34:411–415

    Article  CAS  Google Scholar 

  • Saha AK, Mitra BC (1996) Studies on cyanoethylation of jute fiber. J Appl Polym Sci 62:733–742

    Article  CAS  Google Scholar 

  • Song ZY, Xing MH, Zhang J, Li BA, Wang SC (2012) Determination of phase diagram of a ternary PVDF/γ-BL/DOP system in TIPS process and its application in preparing hollow fiber membranes for membrane distillation. Sep Purif Technol 90:221–230

    Article  CAS  Google Scholar 

  • Takahashi Y, Kitahama A, Furukawa T (2004) Dielectric properties of the surface layer in ultra-thin films of a VDF/TrFE copolymer. IEEE Trans Dielectr Electr Insul 11:227–231

    Article  CAS  Google Scholar 

  • Takechi S, Teramoto Y, Nishio Y (2016) Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose 23:765–777

    Article  CAS  Google Scholar 

  • Tan DQ, Cao Y, Irwin PC, Cunningham D (2010) High-temperature capacitors and methods of making the same. USA patent application 20100244585

  • Wang XY, Zhang L, Sun DH, An QF, Chen HL (2009) Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination 236:170–178

    Article  CAS  Google Scholar 

  • Xu PM, Guo GJ, Liu XL, Wei JZ, Wu ZS (1994) Study on the relation between the thickness and the dielectric and pyroelectric coefficients of PVDF/TGS composite material film by experiment. Ferroelectrics 157:411–414

    Article  CAS  Google Scholar 

  • Xu HP, Dang ZM, Bing NC, Wu YH, Yang DD (2010) Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites. J Appl Phys 107:034105

    Article  CAS  Google Scholar 

  • Yen SPS, Lewis CR, Cygan PJ, Jow RT (1996) Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors. US patent 5490035

  • Yeow ML, Liu YT, Li K (2004) Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J Appl Polym Sci 92:1782–1789

    Article  CAS  Google Scholar 

  • Young TH, Cheng LP, Lin DJ, Fane L, Chuang WY (1999) Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 40:5315–5323

    Article  CAS  Google Scholar 

  • Zhang L, Cheng ZY (2011) Development of polymer-based 0–3 composites with high dielectric constant. J Adv Dielectr 1:389–406

    Article  CAS  Google Scholar 

  • Zhang C et al (2016) Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer 98:237–243

    Article  CAS  Google Scholar 

  • Zhou C, Hou ZC, Lu XF, Liu ZY, Bian XK, Shi LQ, Li LA (2010) Effect of polyethersulfone molecular weight on structure and performance of ultrafiltration membranes. Ind Eng Chem Res 49:9988–9997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from National Natural Science Foundation of China (No. 51473174). Thanks to Prof. French for his kind helps on language proofing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Kang, Jianjun Xie or Ruigang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Kang, H., Yang, H. et al. Preparation and dielectric properties of porous cyanoethyl cellulose membranes. Cellulose 26, 1261–1275 (2019). https://doi.org/10.1007/s10570-018-2132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2132-5

Keywords

Navigation