Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface

Abstract

In this work, lignocellulose nanofibrils (LCNFs) were initially prepared from 4, 8 and 16% sodium hydroxide pretreated wheat straw by mechanical grinding to evaluate the effect of lignin on the fibrillation process, and then superhydrophobic surface was prepared through coating fluoroalkyl silane modified LCNFs on glass and filter paper. The LCNFs with various amounts of lignin possess a fine structure with an average diameter of 13–17 nm and the length in microscale. The superhydrophobic surface was obtained by the LCNFs modified with the fluoroalkyl silane at an extremely low dosage (0.31 v/v%) owing to the presence of inherent hydrophobic lignin for synergetic effect. Although the high content of lignin in LCNFs has minor negative effect on the abrasion resistance of the as-prepared superhydrophobic surfaces, such a superhydrophobic surface has excellent water repellency and self-cleaning properties that offer LCNFs many promising applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023

    CAS  Article  Google Scholar 

  2. Abe K, Iwamoto S, Hiroyuki Y (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278

    CAS  Article  Google Scholar 

  3. Alemdar A, Sain M (2008a) Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    CAS  PubMed  Article  Google Scholar 

  4. Alemdar A, Sain M (2008b) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    CAS  Article  Google Scholar 

  5. Baidya A, Ganayee MA, Ravindran SJ, Tam KC, Das SK, Ras RHA, Pradeep T (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11(11):11091–11099

    CAS  PubMed  Article  Google Scholar 

  6. Ballner D, Herzele S, Keckes J, Edler M, Griesser T, Saake B, Liebner F, Potthast A, Paulik C, Gindl-Altmutter W (2016) Lignocellulose nanofiber-reinfored polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. ACS Appl Mater Interfaces 8(21):13520–13525

    CAS  PubMed  Article  Google Scholar 

  7. Bian HY, Chen LH, Dai HQ, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176

    CAS  PubMed  Article  Google Scholar 

  8. Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E (2007) Why do pigeon feathers repel water? Hydrophobicity of pennae, cassie-bacter wetting hypothesis and cassie-wenzel capillarity-induced wetting transition. J Colloid Interface Sci 311(1):212–216

    CAS  PubMed  Article  Google Scholar 

  9. Browning BL (1967) Methods of wood chemistry, vol 2. Wiley, New York

    Google Scholar 

  10. Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17(1):40–71

    CAS  Article  Google Scholar 

  11. Chen LH, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843

    CAS  Article  Google Scholar 

  12. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170

    CAS  Article  Google Scholar 

  13. Deng X, Mammen L, Zhao YF, Lellign P, Müllen K, Li C, Butt H-J, Vollmer D (2011) Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv Mater 23(26):962–2965

    Article  CAS  Google Scholar 

  14. Diop CIK, Tajvidi M, Bilodeau MA, Bousfiled DW, Hunt JF (2017) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24(7):3037–3050

    CAS  Article  Google Scholar 

  15. Ferrer A, Quintana E, Filpponen H, Solala I, Vidal T, Rodrìguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193

    CAS  Article  Google Scholar 

  16. Figueiredo P, Lintinen K, Kiriazis A, Hynninen V, Liu Z, Bauleth-Ramos T, Rahikkala A, Correia A, Kohout T, Sarmento B, Yli-Kauhaluoma J, Hirvonen J, Ikkala O, Kostiainen MA, Santos HA (2017) In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 121:97–108

    CAS  PubMed  Article  Google Scholar 

  17. Gao XF, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432:36

    CAS  PubMed  Article  Google Scholar 

  18. Gindl-Altmutter W, Obersriegnig M, Veigel S, Liebner F (2015) Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose. Chemsuschem 8(1):87–91

    CAS  PubMed  Article  Google Scholar 

  19. Hideno A, Abe K, Uchimura H, Yano H (2016) Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers. Cellulose 23(6):3639–3651

    CAS  Article  Google Scholar 

  20. Hoeger I, Nair SS, Ragauskas AJ, Deng YL, Rojas J, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818

    CAS  Article  Google Scholar 

  21. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178

    CAS  Article  Google Scholar 

  22. Li C, Boban M, Snyder SA, Kobaku SPR, Kwon G, Mehta G, Tuteja A (2016a) Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Fun Mater 26(33):6121–6131

    CAS  Article  Google Scholar 

  23. Li YN, Liu YX, Chen WH, Wang QW, Liu YX, Li J, Yu HP (2016b) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018

    CAS  Article  Google Scholar 

  24. Li YY, Wang CG, Zhang SY (2018) Study on combustion characteristics of lignin in black liquor of kraft pulp. J For Eng 3(2):59–63

    Google Scholar 

  25. Lu Y, Sathasivam S, Song JL, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135

    CAS  PubMed  Article  Google Scholar 

  26. Mertaniemi H, Laukkanen A, Teirfolk J-E, Ikkala O, Ras RHA (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2:2882–2886

    CAS  Article  Google Scholar 

  27. Nagatani A (2017) Characteristics and applications of cellulose nanofiber reinforced rubber composites. Int Polym Sci Technol 44:7–14

    Google Scholar 

  28. Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150

    CAS  Article  Google Scholar 

  29. Nair SS, Kuo PY, Chen HY, Yan N (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Ind Crops Prod 100:208–217

    CAS  Article  Google Scholar 

  30. Neuberg P, Hamaidi I, Danilin S, Ripoll M, Linder V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy JS (2018) Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. Nanoscale 10:1587–1590

    CAS  PubMed  Article  Google Scholar 

  31. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15:4321–4323

    CAS  Article  Google Scholar 

  32. Pakdel A, Bando Y, Golberg D (2014) Plasma-assisted interface engineering of boron nitride nanostructure films. ACS Nano 8(10):10631–10639

    CAS  PubMed  Article  Google Scholar 

  33. Park KC, Choi HJ, Chang CH, Cohen RE, McKinely GH, Barbastathis G (2012) Nanotextured silica surfaces with robust superhydrophobicity omnidirectional broadband supertransmissvity. ACS Nano 6:3789–3799

    CAS  PubMed  Article  Google Scholar 

  34. Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartianinen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17(3):1853–1866

    CAS  Article  Google Scholar 

  35. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Roach P (2007) Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Mater Chem Phys 103(1):112–117

    CAS  Article  Google Scholar 

  36. Song JL, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28(2):216–238

    CAS  Article  Google Scholar 

  37. Soni B, Hassan EB, Mahmound B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134(10):581–589

    CAS  PubMed  Article  Google Scholar 

  38. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968

    CAS  PubMed  Article  Google Scholar 

  39. Su FH, Yao K (2014) Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl Mater Interfaces 6(11):8762–8770

    CAS  PubMed  Article  Google Scholar 

  40. Ta DV, Dunn A, Wasley TJ, Kay RW, Stringer J, Smith PJ, Connaughton C, Shephard JD (2015) Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl Surf Sci 357:248–254

    CAS  Article  Google Scholar 

  41. Teisala H, Tuominen M, Kuusipalo J (2014) Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications. Adv Mater Interfaces 1(1):130026

    Article  CAS  Google Scholar 

  42. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton, D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, NREL, Report No. TP-510-42618

  43. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose-micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88

    CAS  PubMed  Article  Google Scholar 

  44. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23(5):673–678

    CAS  PubMed  Article  Google Scholar 

  45. Wen JL, Chen TY, Sun RC (2017) Research progress on separation and structural analysis of lignin in lignocellulosic biomass. J For Eng 2(5):76–84

    Google Scholar 

  46. Winter A, Andorfer L, Herzele S, Zimmermann T, Saake B, Edler M, Griesser T, Konnerth J, Gindl-Altmutter W (2017) Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. J Mater Sci 52(1):60–72

    CAS  Article  Google Scholar 

  47. Wu QL, Mei CT, Han JQ, Yue YY, Xu XW (2018) Preparation technology and industrialization status of nanocellulose. J For Eng 3(1):1–9

    CAS  Article  Google Scholar 

  48. Yu HY, Qin ZY, Liang BL, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944

    CAS  Article  Google Scholar 

  49. Zhang YB, Chen Y, Shi L, Li J, Guo ZG (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22:799–815

    CAS  Article  Google Scholar 

  50. Zhang F, Ren H, Shen LL, Tong GL, Deng YL (2017) Micro-nano structural engineering of filter paper surface for high selective oil-water separation. Cellulose 24:2913–2924

    CAS  Article  Google Scholar 

  51. Zhang TM, Zhang Y, Jiang H, Liu S, Yao Y (2018) Characterization of CNF/CNC composite aerogel. J For Eng 3(5):91–96

    Google Scholar 

  52. Zhou H, Wang HX, Niu HT, Gestos A, Wang XG, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412

    CAS  PubMed  Article  Google Scholar 

  53. Zhuo X, Liu C, Pan RT, Dong XY, Li YF (2017) Nanocellulose mechanically isolated from Amorpha fruticose Linn. ACS Sustain Chem Eng 5(5):4414–4420

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31770623 and 31730106).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongcan Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Jiang, B., Song, J. et al. Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose 26, 933–944 (2019). https://doi.org/10.1007/s10570-018-2129-0

Download citation

Keywords

  • Lignocellulose nanofibrils (LCNFs)
  • Lignin
  • Superhydrophic surface
  • Water Contact angle (WCA)
  • Modification
  • Silane