Abstract
In this work, bacterial cellulose/electrospun membrane three-dimensional (BC/ENM 3D) hybrid structures were fabricated using in-situ self-assembly and characterized by SEM and FTIR. SEM showed as the bacterium extrudes cellulose nanofibrils; they gradually self-assemble to form a unified network on membrane surface and also penetrate into its structure, hence securely binding electrospun nanofiber and interlocking multiple membrane layers to form a stable 3D hybrid scaffold. FTIR results confirmed the presence of BC in the resulting nanocomposites. The permeability and porosity of the scaffold decreased with prolonged fermentation and with increased oxygen ratio as the cellulose grew more quickly.
Graphical Abstract






Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149. https://doi.org/10.1016/j.biomaterials.2005.10.026
Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):30–320. https://doi.org/10.1002/term.97
Bäckdahl H, Risberg B, Gatenholm P (2010) Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng 31:14–21
Bielecki SKA, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. Polysaccharides I: polysaccharides from prokaryotes. In: Vandamme E, De Baets S (eds) Biopolymers online. Wiley-VCH, Weinheim, pp 37–46
Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):34–425. https://doi.org/10.1002/bit.21314
Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):901–8889. https://doi.org/10.1016/j.biomaterials.2010.07.108
Borzani W, de Souza SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotech Lett 17(11):1271–1272. https://doi.org/10.1007/bf00128400
Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569
Chatterjee S, Potdar A, Kuhn S, Kumaraswamy G (2018) Preparation of macroporous scaffolds with holes in pore walls and pressure driven flows through them. RSC Adv 8(44):24731–24739. https://doi.org/10.1039/C8RA03867H
Cicuéndez M, Malmsten M, Doadrio JC, Portolés MT, Izquierdo-Barba I, Vallet-Regí M (2013) Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro. J Mater Chem B 2:49–58
Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):51–145. https://doi.org/10.1016/j.biomaterials.2005.07.035
Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (London) 8(2):98–287. https://doi.org/10.2217/nnm.12.211
Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145. https://doi.org/10.1007/s10934-010-9364-6
Gatenholm, Bodin A, Bäckdahl H, Gustafsson L, Bo Risberg P (2006) Manufacturing and characterization of bacterial cellulose tubes using two different fermentation Techniques. In: Mendez-Vilas A (ed) Modern multidisciplinary applied microbiology. Wiley-VCH, Weinheim, pp 22–619
Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34(10):2421–2427. https://doi.org/10.1016/j.biomaterials.2012.12.013
Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1(2):270–280
Jun M, He Y, Liu X, Chen W, Wang A, Lin C-Y, Mo X, Ye X (2018) A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Int J Nanomed 13:1553
Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. J Polym Res 18(4):739–744. https://doi.org/10.1007/s10965-010-9470-9
Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603. https://doi.org/10.1016/S0079-6700(01)00021-1
Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):93–3358. https://doi.org/10.1002/anie.200460587
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):66–5438. https://doi.org/10.1002/anie.201001273
Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci AMS 9(3):527–534. https://doi.org/10.5114/aoms.2013.33433
Levesque SG, Lim RM, Shoichet MS (2005) Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 26(35):46–7436. https://doi.org/10.1016/j.biomaterials.2005.05.054
Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2):193–196. https://doi.org/10.1016/j.matchemphys.2008.01.040
Luo H, Xiong G, Yang Z, Raman SR, Si H, Wan Y (2014) A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv 4(28):14369–14372. https://doi.org/10.1039/C4RA00318G
Mello LR, Feltrin LT, Fontes Neto PT, Ferraz FA (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86(1):50–143. https://doi.org/10.3171/jns.1997.86.1.0143
Naeem M, Lv P, Zhou H, Naveed T, Wei Q (2018) A novel in situ self-assembling fabrication method for bacterial cellulose-electrospun nanofiber hybrid structures. Polymers 10(7):712
Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJ (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51. https://doi.org/10.1016/j.carbpol.2015.04.007
Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):86–1277. https://doi.org/10.1007/s00253-011-3432-y
Sadat-Shojai M, Khorasani MT, Jamshidi A (2016) A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J 289:38–47
Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of acetobacter xylinum. Microbiology 11:123–129
Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1):15–27. https://doi.org/10.1016/j.memsci.2005.06.065
Taboas J, Maddox RD, Krebsbach PH, Hollister S (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194
Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotechnol Biochem 59(8):1498–1502. https://doi.org/10.1271/bbb.59.1498
Uraki Y, Nemoto J, Otsuka H, Tamai Y, Sugiyama J, Kishimoto T, Ubukata M, Yabu H, Tanaka M, Shimomura M (2007) Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydr Polym 69:1–6
Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37(5):592–596. https://doi.org/10.1016/j.ejvs.2009.01.007
Wu Y, Wang L, Guo B, Ma P (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. Acs Nano 11:5646–5659
Yang W, Yang F, Wang Y, Both SK, Jansen JA (2013) In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9(1):12–4505. https://doi.org/10.1016/j.actbio.2012.10.003
Yoshino T, Asakura T, Toda K (1996) Cellulose production by acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36
Zahedmanesh H, Mackle JN, Sellborn A, Drotz K, Bodin A, Gatenholm P, Lally C (2011) Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater 97(1):13–105. https://doi.org/10.1002/jbm.b.31791
Funding
This work was supported by the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-21), and the 111 Project (B17021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Naeem, M.A., Alfred, M., Lv, P. et al. Three-dimensional bacterial cellulose-electrospun membrane hybrid structures fabricated through in-situ self-assembly. Cellulose 25, 6823–6830 (2018). https://doi.org/10.1007/s10570-018-2084-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-018-2084-9