Effect of wettability and surface free energy of collection substrates on the structure and morphology of dry-spun cellulose nanofibril filaments

Abstract

Utilization of cellulose nanofibrils (CNF) for filament production is a comparatively new approach, which can broaden nanocellulose applications by providing continuous long filaments suitable for composite and textile applications. Methods are proposed for the spinning of filaments from cellulose nanofibril suspensions, which are mainly categorized into two groups, i.e. dry-spinning and wet-spinning. For the dry-spinning method, the substrate on which the filament is spun will have a significant influence on the properties of the filament because the as-spun CNF will initially contact it. In this work, the influence of different collection substrates on the properties of CNF filament was studied. Filaments with an average diameter of 0.1 mm were spun on different collection substrates including Teflon tape, Teflon film and glass. The influence of adding oil, as a friction modifier, on the surface properties of the substrate and the structure of the resultant filaments was evaluated. Wettability of each substrate in the absence of oil, and the presence of a thin layer and a thick layer of oil was studied. Circularity of the filaments was measured using image analysis of the cross sections and was correlated with the surface properties of the substrates. It was found that while the surface properties of the collection substrate were related to the uniformity and cross section circularity of the filaments, those spun on a thick layer of oil had the best circular shape irrespective of the substrate material. The results of this study can be used to optimize dry-spinning of CNF filaments.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88

    CAS  Article  Google Scholar 

  2. Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioRes 12:4093–4110

    CAS  Article  Google Scholar 

  3. Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 5:327–339

    Article  Google Scholar 

  4. Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017a) Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Ind Crops Prod 109:27–36

    CAS  Article  Google Scholar 

  5. Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017b) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24:3037–3050

    CAS  Article  Google Scholar 

  6. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. De Gruyter, p 460

  7. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    CAS  Article  Google Scholar 

  8. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    CAS  Article  Google Scholar 

  9. Gardner DJ, Blumentritt M, Wang L, Yildirim N (2014) Adhesion theories in wood adhesive bonding. Rev Adhes Adhes 2:127–172

    CAS  Article  Google Scholar 

  10. Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ, Gramlich WM (2017) Dry-spun neat cellulose nanofibril filaments: influence of drying temperature and nanofibril structure on filament properties. Polymers 9:1–13

    Article  Google Scholar 

  11. Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ (2018) Reinforcement of natural fiber yarns by cellulose nanomaterials: a multi-scale study. Ind Crops Prod 111:471–481

    CAS  Article  Google Scholar 

  12. Grande R, Trovatti E, Carvalho A, Gandini A (2017) Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J Mater Chem A 5:13098–13103

    CAS  Article  Google Scholar 

  13. Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018

    Article  PubMed Central  Google Scholar 

  14. Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7:13022–13028

    CAS  Article  Google Scholar 

  15. Hooshmand S, Aitomäki Y, Berglund L, Mathew AP, Oksman K (2017) Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Compos Sci Technol 150:79–86

    CAS  Article  Google Scholar 

  16. Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836

    CAS  Article  Google Scholar 

  17. Kaelble DH (1920) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81

    Article  Google Scholar 

  18. Kafy A, Kim HC, Zhai L, Kim JW, Hai LV, Kang TJ, Kim J (2017) Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci Rep 7:1–8

    Article  Google Scholar 

  19. Leng W, Hunt JF, Tajvidi M (2017a) Screw and nail withdrawal strength and water soak properties of wet-formed cellulose nanofibrils bonded particleboard. BioRes 12:7692–7710

    CAS  Article  Google Scholar 

  20. Leng W, Hunt JF, Tajvidi M (2017b) Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard. BioRes 12:4986–5000

    CAS  Article  Google Scholar 

  21. Lundahl MJ, Klar V, Wang L, Ago M, Rojas OJ (2016a) Spinning of cellulose nanofibrils into filaments: a review. Ind Eng Chem Res 2:8–19

    Google Scholar 

  22. Lundahl MJ, Cunha AG, Rojo E, Papageorgiou AC, Rautkari L, Arboleda JC, Rojas OJ (2016b) Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci Rep 6:1–14

    Article  Google Scholar 

  23. Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014) One-dimensional core-shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Adv 4:52542–52549

    CAS  Article  Google Scholar 

  24. Mittal N, Ansari F, Gowda VK, Brouzet C, Chen P, Larsson PT, Roth SV, Lundell F, Wågberg L, Kotov NA, Söderberg LD (2018) Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano. https://doi.org/10.1021/acsnano.8b01084

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7:1–10

    Article  Google Scholar 

  26. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  Article  Google Scholar 

  27. Nechyporchuk O, Bordes R, Köhnke T (2017) Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces 9:39069–39077

    CAS  Article  PubMed Central  Google Scholar 

  28. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part-A Appl Sci 83:2–18

    CAS  Article  Google Scholar 

  29. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    CAS  Article  Google Scholar 

  30. Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. In Farbe und Lack 77:997–1005

    CAS  Google Scholar 

  31. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    CAS  Article  Google Scholar 

  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9:671–675

    CAS  Article  PubMed Central  Google Scholar 

  33. Shen Y, Orelma H, Sneck A, Kataja K, Salmela J, Qvintus P, Suurnäkki A, Harlin A (2016) High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23:3393–3398

    CAS  Article  Google Scholar 

  34. Tajvidi M, Gardner DJ, Bousfield DW (2016) Cellulose nanomaterials as binders: laminate and particulate systems. J Renew Mater 4:365–376

    CAS  Article  Google Scholar 

  35. Toivonen MS, Kurki-Suonio S, Wagermaier W, Hynninen V, Hietala S, Ikkala O (2017) Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromol 18:1293–1301

    CAS  Article  Google Scholar 

  36. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  37. Wilhelmy L (1863) Ueber die Abhängigkeit der Capillaritäts‐Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik 195(6):177–217

    Article  Google Scholar 

  38. Yousefi Shivyari N, Tajvidi M, Bousfield DW, Gardner DJ (2016) Production and characterization of laminates of paper and cellulose nanofibrils. ACS Appl Mater Interfaces 8:25520–25528

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the USDA National Institute of Food and Agriculture, McIntire-Stennis. Project# 041616. Maine Agricultural and Forest Experiment Station Publication Number 3622.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Tajvidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Tajvidi, M., Gardner, D.J. et al. Effect of wettability and surface free energy of collection substrates on the structure and morphology of dry-spun cellulose nanofibril filaments. Cellulose 25, 6305–6317 (2018). https://doi.org/10.1007/s10570-018-2029-3

Download citation

Keywords

  • Dry spinning
  • Cellulose nanofibrils
  • Collection substrate
  • Filaments