Aksoy L, Kolay E, Agilönü Y, Aslan Z, Kargioglu M (2013) Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J Biol Sci 20:235–239. https://doi.org/10.1016/j.sjbs.2013.02.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Almeida MMB, de Souza PHM, Arriaga AMC, do Prado GM, Magalhões CEC, Maia GA, de Lemos TLG (2011) Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res Int 44:2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051
CAS
Article
Google Scholar
Amna T, Hassan MS, Yousef A, Mishra A, Khil MS, Kim HY (2013) Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: a novel biomaterial system. Food Bioprocess Technol 6(4):988–996. https://doi.org/10.1007/s11947-011-0741-1
CAS
Article
Google Scholar
Amna T, Yang J, Ryu KS, Hwang IH (2015) Electrospun antimicrobial hybrid mats: innovative packaging material for meat and meat-products. J Food Sci Technol 52(7):4600–4606. https://doi.org/10.1007/s13197-014-1508-2
CAS
Article
PubMed
Google Scholar
Amorati R, Valgimigli L (2015) Advantages and limitations of common testing methods for antioxidants. Free Radic Res 49(5):633–649. https://doi.org/10.3109/10715762.2014.996146
CAS
Article
PubMed
Google Scholar
Arauz LJ, Jozala AF, Mazzola PG, Penna TCV (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154. https://doi.org/10.1016/j.tifs.2009.01.056
CAS
Article
Google Scholar
Arauz LJ, Jozala AF, Baruque-Ramos J, Mazzola PG, Pessoa-Jr A, Penna TCV (2011) Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. Ann Microbiol 62(1):1–8. https://doi.org/10.1007/s13213-011-0278-6
CAS
Article
Google Scholar
Ataide JA, Carvalho NM, Rebelo MA, Chaud MV, Grotto D, Gerenutti M, Rai M, Mazzola PG, Jozala AF (2017) Bacterial nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical–chemical properties. Sci Rep-UK 7:18031. https://doi.org/10.1038/s41598-017-18271-4
CAS
Article
Google Scholar
Bajpai SK, Chand N, Chaurasia V (2011) Nano zinc oxide-loaded calcium alginate films with potential antibacterial properties. Food Bioprocess Technol 5(5):1871–1881. https://doi.org/10.1007/s11947-011-0587-6
CAS
Article
Google Scholar
Bannin E, Brady KE, Greenberg P (2006) Chelator-induced dispersal and killing of P. aeruginosa cells in a biofilm. Appl Environ Microb 72(3):2064–2069. https://doi.org/10.1128/aem.72.3.2064-2069.2006
Article
Google Scholar
Bauer R, Dicks LM (2005) Mode of action of lipid II-targeting lantibiotics. Int J Food Microbiol 101(2):201–216. https://doi.org/10.1016/j.ijfoodmicro.2004.11.007
CAS
Article
PubMed
Google Scholar
Belfiore C, Castellano P, Vignolo G (2007) Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiol 24:223–229. https://doi.org/10.1016/j.fm.2006.05.006
CAS
Article
PubMed
Google Scholar
Brand-Willians W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Article
Google Scholar
Carter AJ, Adams MR, Woodward MJ, La Ragione RM (2009) Control strategies for Salmonella colonization of poultry: the probiotic perspective. Food Sci Technol Bull Funct Foods 5(9):103–115. https://doi.org/10.1616/1476-2137.15682
Article
Google Scholar
Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071. https://doi.org/10.1016/j.idairyj.2005.10.026
CAS
Article
Google Scholar
Ding JF, Li YY, Xu JJ, Su XR, Gao X, Yue FP (2011) Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocoll 25:1350–1353. https://doi.org/10.1016/j.foodhyd.2010.12.013
CAS
Article
Google Scholar
Dubey S, Sharma RK, Agarwal P, Singh J, Sinha N, Singh RP (2017) From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Int J Biol Macromol 96:52–60. https://doi.org/10.1016/j.ijbiomac.2016.12.016
CAS
Article
PubMed
Google Scholar
Duchene D, Touchard F, Peppas NA (1998) Pharmaceutical and medical aspects of the bioadhesive systems for drug administration. Drug Dev Ind Pharm 14:283–318. https://doi.org/10.3109/03639048809151972
Article
Google Scholar
Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci 48(5):430–441. https://doi.org/10.1080/10408390701425615
CAS
Article
Google Scholar
Fan L, Hu J, Hu Z, Peng M, Wen H, Li Y, Wang T (2016) Preparation and characterization of aminoethyl hydroxypropyl methyl cellulose modified with nisin. Int J Biol Macromol 89:62–69. https://doi.org/10.1016/j.ijbiomac.2016.03.009
CAS
Article
PubMed
Google Scholar
Fang TJ, Hung-Chi T (2004) Growth patterns of Escherichia coli O157:H7 in ground beef treated with nisin, chelators, organic acids and their combinations immobilized in calcium alginate gels. Food Microbiol 20:243–253. https://doi.org/10.1016/S0740-0020(02)00081-3
Article
Google Scholar
FAO bulletin: FAO (1995) AGS Bulletin. Fruit juice processing. http://www.fao.org/docrep/V5030E/V5030E08.htm
Gill AO, Holley RA (2003) Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. Int J Food Microbiol 80:251–259. https://doi.org/10.1016/S0168-1605(02)00171-X
Article
PubMed
Google Scholar
Joseph CS, Prashanth KVH, Rastogi NK, Indiramma AR, Reddy SY, Raghavarao KSMS (2011) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol 4:1179–1185. https://doi.org/10.1007/s11947-009-0203-1
CAS
Article
Google Scholar
Jozala AF, Pértile RN, Alves C, Ebinuma-Santos VC, Seckler M, Gama FM, Pessoa-Jr A (2015a) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99(3):1181–1190. https://doi.org/10.1007/s00253-014-6232-3
CAS
Article
PubMed
Google Scholar
Jozala AF, Novaes LCL, Mazzola PG, Oliveira-Nascimento L, Vessoni Penna TC, Teixeira JA, Passarinha A, Queiroz JA, Pessoa-Jr A (2015b) Low-cost purification of nisin from milk whey to a highly active product. Food Bioprod Process Technol 93:115–121. https://doi.org/10.1016/j.fbp.2013.12.003
CAS
Article
Google Scholar
Jozala AF, Novaes LCL, Lopes AM, Santos-Ebinuma VC, Mazzola PG, Pessoa-Jr A, Grotto D, Gerenutti M, Chaud MV (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072. https://doi.org/10.1007/s00253-015-7243-4
CAS
Article
PubMed
Google Scholar
Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422. https://doi.org/10.1007/s13197-011-0251-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microb Biotechnol 25:933–944. https://doi.org/10.1007/s11274-009-9984-7
Article
Google Scholar
Kopermunsub P, Mayen V, Warin C (2011) Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. Food Res Int 44:605–612. https://doi.org/10.1016/j.foodres.2010.12.011
CAS
Article
Google Scholar
Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Nat Acad Sci USA 103:12999–13003. https://doi.org/10.1073/pnas.0605552103
CAS
Article
Google Scholar
Mastromatteo M, Conte A, Del Nobile MA (2010) Advances in controlled release devices for food packaging applications. Trends Food Sci Technol 21:591–598. https://doi.org/10.1016/j.tifs.2010.07.010
CAS
Article
Google Scholar
Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. https://doi.org/10.1016/j.carbpol.2014.10.008
CAS
Article
PubMed
Google Scholar
Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110. https://doi.org/10.1002/bab.1148
CAS
Article
PubMed
Google Scholar
Moniri M, Moghaddam AB, Azizi S, Rahim RA, Ariff AB, Saad WZ, Navaderi M, Mohamad R (2017) Production and status of bacterial cellulose in biomedical engineering. Nanomater (Basel) 7(9):257. https://doi.org/10.3390/nano7090257
CAS
Article
Google Scholar
Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109(3):520–524. https://doi.org/10.1016/j.jfoodeng.2011.10.030
CAS
Article
Google Scholar
Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603. https://doi.org/10.1016/S0922-338X(98)80012-3
CAS
Article
Google Scholar
Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A (2003) Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol 36:448–451. https://doi.org/10.1046/j.1472-765X.2003.01427.x
CAS
Article
Google Scholar
Peppas NA, Buri PA (1985) Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissue. J Control Release 2:257–275. https://doi.org/10.1016/0168-3659(85)90050-1
CAS
Article
Google Scholar
Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadeshive and bioadeshive materials: a review. Biomaterials 17:1553–1561. https://doi.org/10.1016/0142-9612(95)00307-X
CAS
Article
PubMed
Google Scholar
Perkas N, Amirian G, Dubinsky S, Gazit S, Gedanken A (2007) Ultrasound-assisted coating of nylon 6,6 with silver nanoparticles and its antibacterial activity. J Appl Polym Sci 104:1423–1430. https://doi.org/10.1002/app.24728
CAS
Article
Google Scholar
Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58
CAS
PubMed
PubMed Central
Google Scholar
Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22(4):1194–1199. https://doi.org/10.1021/bp060035o
CAS
Article
PubMed
Google Scholar
Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. https://doi.org/10.1016/j.foodhyd.2013.07.012
CAS
Article
Google Scholar
Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57:3613–3615
CAS
PubMed
PubMed Central
Google Scholar
Tanskul S, Amornthatree K, Jaturonlak N (2013) A new celluloseproducing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym 92:421–428. https://doi.org/10.1016/j.carbpol.2012.09.017
CAS
Article
PubMed
Google Scholar
Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411
CAS
PubMed
PubMed Central
Google Scholar
Vessoni Penna TC, Jozala AF, Gentille TR, Cholewa O (2006) Detection of nisin expression by Lactococcus lactis using two susceptible bacteria to associate the effects of nisin with EDTA. Appl Biochem Biotechnol 129:334. https://doi.org/10.1385/ABAB:129:1:334
Article
Google Scholar
Vital-Lopez FG, Reifman J, Wallqvist A (2015) Biofilm Formation Mechanisms of Pseudomonas aeruginosa predicted via genome-scale kinetic models of bacterial metabolism. PLoS Comput Biol 11(10):1004452. https://doi.org/10.1371/journal.pcbi.1004452
CAS
Article
Google Scholar