Enabling direct laser writing of cellulose-based submicron architectures

Abstract

We report on the first and versatile cellulose-based photoresist, which can be applied in direct laser writing and allows the fabrication of structures with a resolution of less than 1 μm and a feature size of less than 500 nm via two-photon absorption. Therefore, cellulose diacetate is functionalised with methacrylic acid anhydride to introduce photo-crosslinkable side groups into the cellulose chain. The photoresist consists of the methacrylated cellulose diacetate and a photoinitiator both dissolved in acetone. The cellulose-based photoresist can be applied to generate two- and three-dimensional hierarchical structures and clears the way to the design and fabrication of biomimetic architectures solely made from biopolymers.

Graphical abstract

A photo-crosslinkable cellulose-based resist, which can be applied in direct laser writing (DLW), was synthesised. It enables the generation of two- and three-dimensional hierarchical structures with a feature size of less than 500 nm via two-photon absorption. This new photoresist paves the way towards designing and fabricating biomimetic architectures solely made from biopolymers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improvingcompatibility and dispersion. Carbohydr Polym 102:369–375

    Article  CAS  PubMed  Google Scholar 

  2. Auclair N, Kaboorani A, Riedl B, Landry V (2015) Acrylated betulin as a comonomer for bio-based coatings. Part I: characterization, photo-polymerization behavior and thermal stability. Ind Crops Prod 76:530–537

    Article  CAS  Google Scholar 

  3. Barud HS, de Araújo Júnior AM, Santos DB et al (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69

    Article  CAS  Google Scholar 

  4. Çakmakçi E, Güngör A, Kayaman-Apohan N, Kuruca SE, Çetin MB, Dar KA (2012) Cell growth on in situ photo-cross-linked electrospun acrylated cellulose acetate butyrate. J Biomater Sci 23:887–899

    Article  CAS  Google Scholar 

  5. Deng F, Ge X, Zhang Y, Li M-C, Cho UR (2015) Synthesis and characterization of microcrystalline cellulose-graft-poly(methyl methacrylate) copolymers and their application as rubber reinforcements. J Appl Polym Sci 132:42666

    Google Scholar 

  6. Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater 3:444–447

    Article  CAS  PubMed  Google Scholar 

  7. Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin J-J (2013) The use of renewable feedstock in UV-curable materials—a new age for polymers and green chemistry. Prog Polym Sci 38:932–962

    Article  CAS  Google Scholar 

  8. Fischer J, Wegener M (2013) Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7:22–44

    Article  CAS  Google Scholar 

  9. Hampe R, Heinze T (2014) Studies about the solvent-dependent substitution pattern of starch acetates. Macromol Mater Eng 299:1188–1196

    Article  CAS  Google Scholar 

  10. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  11. Ho CMB, Mishra A, Hu K, An J, Kim Y-J, Yoon Y-J (2017) Femtosecond-laser-based 3D printing for tissue engineering and cell biology applications. ACS Biomater Sci Eng 3:2198–2214

    Article  CAS  Google Scholar 

  12. Hohmann JK, Renner M, Waller EH, von Freymann G (2015) Three-dimensional μ-printing: an enabling technology. Adv Opt Mater 3:1488–1507

    Article  CAS  Google Scholar 

  13. Kamath M, Kincaid J, Mandal BK (1996) Interpenetrating polymer networks of photocrosslinkable cellulose derivatives. J Appl Polym Sci 59:45–50

    Article  CAS  Google Scholar 

  14. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  15. Li HF, Li H, Zhong X, Li X, Gibril ME, Zhang Y, Han K, Yu M (2012) Study on the chemical modification of cellulose in ionic liquid with maleic anhydride. Adv Mater Res 581:287–291

    Article  Google Scholar 

  16. Lide DR (1994) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  17. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marsano E, De Paz L, Tambuscio E, Bianchi E (1998) Cellulose methacrylate: synthesis and liquid crystalline behaviour of solutions and gels. Polym 39:4289–4294

    Article  CAS  Google Scholar 

  19. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two photon-absorbed photopolymerization. Opt Lett 22:132–134

    Article  CAS  PubMed  Google Scholar 

  20. Mayer F, Richter S, Hübner P, Jabbour T, Wegener M (2017) 3D fluorescence-based security features by 3D laser lithography. Adv Mater Technol 2:1–5

    Article  CAS  Google Scholar 

  21. Oakdale JS, Ye J, Smith WL, Biener J (2016) Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography. Opt Express 24:27077–27086

    Article  CAS  PubMed  Google Scholar 

  22. Park Y-J, Lim D-H, Kim H-J, Park D-S, Sung I-K (2009) UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int J Adhes Adhes 29:710–717

    Article  CAS  Google Scholar 

  23. Pereira RF, Bártolo PJ (2015) 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 42458:1–15

    Google Scholar 

  24. Qi A, Hoo SP, Friend J, Yeo L, Yue Z, Chan PPY (2014) Hydroxypropyl cellulose methacrylate as a photo-patternable and biodegradable hybrid paper substrate for cell culture and other bioapplications. Adv Healthc Mater 3:543–554

    Article  CAS  PubMed  Google Scholar 

  25. Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymers (Basel) 2:252–264

    Article  CAS  PubMed Central  Google Scholar 

  26. Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl Phys Lett 74:786–788

    Article  CAS  Google Scholar 

  27. Takács E, Wojnárovits L, Földváry CS, Borsa J, Sajó I (2001) Radiation activation of cotton-cellulose prior to alkali treatment. Res Chem Intermed 27:837–845

    Article  Google Scholar 

  28. Thiele S, Arzenbacher K, Gissibl T, Giessen H, Herkommer AM (2017) 3D-printed eagle eye: compound microlens system for foveated imaging. Sci Adv 3:1–6

    Article  Google Scholar 

  29. Träskman B, Tammela V (1986) The preparation and properties of vinyl cellulose. J Appl Polym Sci 31:2043–2054

    Article  Google Scholar 

  30. Trombino S, Cassano R, Bloise E, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid. Carbohydr Polym 75:184–188

    Article  CAS  Google Scholar 

  31. Waller E, von Freymann G (2016) Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption. Polymers 8:297/1–297/13

    Article  CAS  Google Scholar 

  32. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  CAS  Google Scholar 

  33. Wondraczek H, Kotiaho A, Fardim P, Heinze T (2011) Photoactive polysaccharides. Carbohydr Polym 83:1048–1061

    Article  CAS  Google Scholar 

  34. Woolley JT (1975) Refractive index of soybean leaf cell walls. Plant Physiol 55:172–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from German Science Foundation (DFG) for funding our work within the priority program “Tailored Disorder—A science-and engineering-based approach to materials design for advanced photonic applications” (SPP-1839) is gratefully acknowledged. We thank the team from the Nano Structuring Centre (NSC) at University of Kaiserslautern for their support with scanning electron microscopy and Dr. Christina Rösch from the group of Prof. Christiane Ziegler at University of Kaiserslautern for the roughness measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cordt Zollfrank.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rothammer, M., Heep, M., von Freymann, G. et al. Enabling direct laser writing of cellulose-based submicron architectures. Cellulose 25, 6031–6039 (2018). https://doi.org/10.1007/s10570-018-2002-1

Download citation

Keywords

  • Cellulose methacrylate
  • Bio-based photoresist
  • Direct laser writing
  • Submicron patterning