Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites

Abstract

Biodegradable and biocompatible poly (3-hydroxybutyrate) (PHB) is considered a good candidate for biomedical applications provided that its inherent brittleness and thermal stability are corrected. In this work, poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) (PHHO) and bacterial cellulose nanofibers (BC) were used as “soft” and “stiff” modifiers to improve PHB properties. PHHO (5–20 wt%) increased the thermal stability of PHB and PHB-BC composites. On the other hand, BC increased the glass transition and the crystallization temperature of PHB in the blends. The surface morphology of PHB was differently changed by the addition of PHHO and BC: a microporous surface morphology with many well spread pores was produced by the addition of PHHO (20–50 wt%) and a smoother surface by the addition of BC. Still, the surface morphology of PHB/PHHO blends, with homogenously spread submicronic pores, was not changed by BC. Thermal, structural and morphological investigations showed that BC nanofibers are mainly located in PHHO rich phase and at interface. PHB nanocomposite with 20 wt% PHHO showed balanced stiffness-toughness properties and excellent thermal stability, with the onset thermal degradation temperature higher than 270 °C. These properties and its porous surface morphology besides the inherent biodegradability and biocompatibility promote this nanocomposite as a valuable material for tissue engineering. It is remarkable that these favorable properties were obtained by a simple, easily controlled method without additional processes or additives.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abe H, Ishii N, Sato S, Tsuge T (2012) Thermal properties and crystallization behaviors of medium-chain-length poly (3-hydroxyalkanoate)s. Polymer 53:3026–3034

    Article  CAS  Google Scholar 

  2. Akaraonye E, Filip J, Safarikova M, Salih V, Keshavarz T, Knowlesd JC, Roy I (2016) Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly (3-hydroxybutyrate) and micro-fibrillated bacterial cellulose. Polym Int 65:780–791

    Article  CAS  Google Scholar 

  3. Ambrosio-Martin J, Fabra MJ, Lopez-Rubio A, Gorrasi G, Sorrentino A, Lagaron JM (2016) Assessment of ball milling as a compounding technique to develop nanocomposites of poly (3-hydroxybutyrate-co-3- hydroxyvalerate) and bacterial cellulose nanowhiskers. J Polym Environ 24:241–254

    Article  CAS  Google Scholar 

  4. Ariffin H, Nishida H, Shirai Y, Hassan MA (2008) Determination of multiple thermal degradation mechanisms of poly (3-hydroxybutyrate). Polym Degrad Stab 93:1433–1439

    Article  CAS  Google Scholar 

  5. Ashby RD, Solaiman DKY (2014) Sophorolipid-induced dimpling and increased porosity in solvent-cast short-chain polyhydroxyalkanoate films: impact on thermomechanical properties. J Appl Polym Sci 131:40609

    Article  CAS  Google Scholar 

  6. Asrar J, Valentin HE, Berger PA, Tran M, Padgette SR, Garbow JR (2002) Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers. Biomacromolecules 3:1006–1012

    Article  CAS  PubMed  Google Scholar 

  7. Avella M, Martuscelli E (1988) Poly-d-(−)(3-hydroxybutyrate)/poly (ethylene oxide) blends: phase diagram, thermal and crystallization behavior. Polymer 29:1731–1737

    Article  CAS  Google Scholar 

  8. Barham PJ, Keller A, Otun EL (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794

    Article  CAS  Google Scholar 

  9. Basnett P, Ching KY, Stolz M, Knowles JC, Boccaccini AR, Smith C, Locke IC, Keshavarz T, Roy I (2013) Novel poly (3-hydroxyoctanoate)/poly (3-hydroxybutyrate) blends for medical applications. React Funct Polym 73:1340–1348

    Article  CAS  Google Scholar 

  10. Bordes P, Pollet E, Bourbigot S, Averous L (2008) Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation. Macromol Chem Phys 209:1473–1484

    Article  CAS  Google Scholar 

  11. Bragg WH, Bragg WL (1913) The reflexion of X-rays by crystals. Proc R Soc London Ser A 88:428–438

    Article  CAS  Google Scholar 

  12. Chen J, Wang Y, Yin Z, Tam KC, Wu D (2017) Morphology and mechanical properties of poly (β-hydroxybutyrate)/poly (ε-caprolactone) blends controlled with cellulosic particles. Carbohydr Polym 174:217–225

    Article  CAS  PubMed  Google Scholar 

  13. Ding G, Liu J (2013) Morphological varieties and kinetic behaviors of poly (3-hydroxybutyrate) (PHB) spherulites crystallized isothermally from thin melt film. Colloid Polym Sci 291:1547–1554

    Article  CAS  Google Scholar 

  14. Dufresne A, Vincendon M (2000) Poly (3-hydroxybutyrate) and poly (3-hydroxyoctanoate) blends: morphology and mechanical behavior. Macromolecules 33:2998–3008

    Article  CAS  Google Scholar 

  15. El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674

    Article  CAS  Google Scholar 

  16. Enrique-Jimenez P, Vega JF, Martínez-Salazar J, Ania F, Flores A (2016) Mapping the mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) banded spherulites by nanoindentation. Polymers 8:358

    Article  CAS  Google Scholar 

  17. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) The mechanical properties of a thermoplastic elastomer produced by the bacterium Pseudomonas oleovorans. Rubb Chem Technol 65:761–777

    Article  CAS  Google Scholar 

  18. Griffith LG (2002) Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 961:83–95

    Article  CAS  PubMed  Google Scholar 

  19. Gross RA, DeMello C, Lenz RW, Brand H, Clinton Fuller R (1989) Biosynthesis and characterization of poly β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    Article  CAS  Google Scholar 

  20. He J-D, Cheung MK, Yu PH, Chen G-Q (2001) Thermal analyses of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). J Appl Polym Sci 82:90–98

    Article  CAS  Google Scholar 

  21. Hong S-G, Gau T-K, Huang S-C (2011) Enhancement of the crystallization and thermal stability of polyhydroxybutyrate by polymeric additives. J Therm Anal Calorim 103:967–975

    Article  CAS  Google Scholar 

  22. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233

    Article  CAS  Google Scholar 

  23. Jawaid M, Abdul Khalil HPS, Abu Bakar A, Noorunnisa Khanam P (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32:1014–1019

    Article  CAS  Google Scholar 

  24. Jiang N, Abe H (2015) Morphological changes in poly (L-lactide)/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blends induced by different miscibility. Polymer 66:259–267

    Article  CAS  Google Scholar 

  25. Kai D, Chong HM, Chow LP, Jiang L, Lin Q, Zhang K, Zhang H, Zhang Z, Loh XJ (2018) Strong and biocompatible lignin/poly (3-hydroxybutyrate) composite nanofibers. Compos Sci Technol 158:26–33

    Article  CAS  Google Scholar 

  26. Laycock B, Halley P, Pratt S, Werker A, Lant P (2014) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 39:397–442

    Article  Google Scholar 

  27. Lim J, Chong MSK, Teo EY, Chen G-Q, Chan JKY, Teoh S-H (2013) Biocompatibility studies and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/polycaprolactone blends. J Biomed Mater Res Part B Appl Biomater 101B:752–761

    Article  CAS  Google Scholar 

  28. Lima MFS, Vasconcellos MAZ, Samios D (2002) Crystallinity changes in plastically deformed isotactic polypropylene evaluated by x-ray diffraction and differential scanning calorimetry methods. J Polym Sci Part B Polym Phys 40:896–903

    Article  CAS  Google Scholar 

  29. Liu Q-S, Zhu M-F, Wu W-H, Qin Z-Y (2009) Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polym Degrad Stab 94:18–24

    Article  CAS  Google Scholar 

  30. Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75–76:52–59

    Article  CAS  Google Scholar 

  31. Luk JZ, Rondeau E, Trau M, Cooper-White J, Grøndahl L (2011) Characterisation of amine functionalised poly (3-hydroxybuturate-co-3-hydroxyvalerate) surfaces. Polymer 52:3251–3258

    Article  CAS  Google Scholar 

  32. Marchessault RH, Monasterios CJ, Morin FG, Sundararajan PR (1990) Chiral poly (beta-hydroxyalkanoates): an adaptable helix influenced by the alkane side-chain. Int J Biol Macromol 12(2):158–165

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Sanz M, Villano M, Oliveira C, Albuquerque MGE, Majone M, Reis M, Lopez-Rubio A, Lagaron JM (2014) Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose. New Biotechnol 31(4):364–376

    Article  CAS  Google Scholar 

  34. Modi S, Koelling K, Vodovotz Y (2012) Miscibility of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly (lactic acid) blends determined by thermal analysis. J Appl Polym Sci 124:3074–3081

    Article  CAS  Google Scholar 

  35. Nerkar M, Ramsay JA, Ramsay BA, Kontopoulou M (2014) Melt compounded blends of short and medium chain-length poly-3-hydroxyalkanoates. J Polym Environ 22:236–243

    Article  CAS  Google Scholar 

  36. Panaitescu DM, Frone AN, Chiulan I (2016a) Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose. Ind Crops Prod 93:251–266

    Article  CAS  Google Scholar 

  37. Panaitescu DM, Frone AN, Chiulan I, Casarica A, Nicolae CA, Ghiurea M, Trusca R, Damian CM (2016b) Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Mater Des 110:790–801

    Article  CAS  Google Scholar 

  38. Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M (2017a) Plasticized poly (3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci 134:44810. https://doi.org/10.1002/app.44810

    Article  CAS  Google Scholar 

  39. Panaitescu DM, Lupescu I, Frone AN, Chiulan I, Nicolae CA, Tofan V, Stefaniu A, Somoghi R, Trusca R (2017b) Medium chain-length polyhydroxyalkanoate copolymer modified by bacterial cellulose for medical devices. Biomacromolecules 18:3222–3232

    Article  CAS  PubMed  Google Scholar 

  40. Patricio PSO, Pereira FV, dos Santos MC, de Souza PP, Roa JPB, Orefice RL (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621

    Article  CAS  Google Scholar 

  41. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  42. Plate NA, Shibaev VP (1987) Comb-shaped polymers and liquid crystals. Plenum Press, New York

    Google Scholar 

  43. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R 72:29–47

    Article  CAS  Google Scholar 

  44. Roy I, Visakh PM (2015) Polyhydroxyalkanoate (PHA) based blends, composites and nanocomposites. RSC, Cambridge

    Google Scholar 

  45. Ruka DR, Simon GP, Dean K (2014) Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose 21:4299–4308

    Article  CAS  Google Scholar 

  46. Sánchez RJ, Schripsema J, da Silva LF, Taciro MK, Pradella JGC, Gomez JGC (2003) Medium-chain-length polyhydroxyalkanoic acids (PHA mcl) produced by Pseudomonas putida IPT 046 from renewable sources. Eur Polym J 39(7):1385–1394

    Article  CAS  Google Scholar 

  47. Seoane IT, Fortunati E, Puglia D, Cyras VP, Manfredi LB (2016) Development and characterization of bionanocomposites based on poly (3-hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polym Int 65:1046–1053

    Article  CAS  Google Scholar 

  48. Seoane IT, Cerrutti P, Vazquez A, Manfredi LB, Cyras VP (2017) Polyhydroxybutyrate-based nanocomposites with cellulose nanocrystals and bacterial cellulose. J Polym Environ 25:586–598

    Article  CAS  Google Scholar 

  49. Shan G-F, Gong X, Chen W-P, Chen L, Zhu M-F (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polym Sci 289:1005–1014

    Article  CAS  Google Scholar 

  50. Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng L-S, Pilla S (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449

    Article  CAS  Google Scholar 

  51. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563

    Article  CAS  Google Scholar 

  52. Ten E, Bahr DF, Li B, Jiang L, Wolcott MP (2012) Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind Eng Chem Res 51:2941–2951

    Article  CAS  Google Scholar 

  53. Thirtha V, Lehman R, Nosker T (2005) Glass transition phenomena in melt-processed polystyrene/polypropylene blends. Polym Eng Sci 45:1187–1193

    Article  CAS  Google Scholar 

  54. Wang C, Hsu C-H, Hwang I-H (2008) Scaling laws and internal structure for characterizing electrospun poly[(R)-3-hydroxybutyrate] fibers. Polymer 49:4188–4195

    Article  CAS  Google Scholar 

  55. Wang B, Sharma-Shivappa RR, Olson JW, Khan SA (2013) Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind Crops Prod 43:802–811

    Article  CAS  Google Scholar 

  56. Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103

    Article  CAS  Google Scholar 

  57. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128

    Article  CAS  Google Scholar 

  58. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212:613–626

    Article  CAS  Google Scholar 

  59. Xie Y, Kohls D, Noda I, Schaefer DW, Akpalu YA (2009) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) nanocomposites with optimal mechanical properties. Polymer 50:4656–4670

    Article  CAS  Google Scholar 

  60. Yu G, Wu P (2014) Effect of chemically modified graphene oxide on the phase separation behaviour and properties of an epoxy/polyetherimide binary system. Polym Chem 5:96–104

    Article  CAS  Google Scholar 

  61. Yu F, Nakamura N, Inoue Y (2010) Effect of comonomer-unit composition and its distribution of bacterial poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) on miscibility and physical properties of its blend with poly (ethylene oxide). Polymer 51:5556–5566

    Article  CAS  Google Scholar 

  62. Yu H-Y, Qin Z-Y, Liu L, Yang X-G, Zhou Y, Yao J-M (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28

    Article  CAS  Google Scholar 

  63. Zarei M, Karbasi S (2018) Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications. J Porous Mater 25:259–272

    Article  CAS  Google Scholar 

  64. Zhao H, Cui Z, Sun X, Turng LH, Peng X (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52:2569–2581

    Article  CAS  Google Scholar 

  65. Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y (2016) Poly (hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C 58:757–767

    Article  CAS  Google Scholar 

  66. Zhijiang C, Cong Z, Jie G, Qing Z, Kongyin Z (2018) Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C 82:29–40

    Article  CAS  Google Scholar 

  67. Zini E, Focarete ML, Noda I, Scandola M (2007) Bio-composite of bacterial poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers. Compos Sci Technol 67:2085–2094

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Ministry of Research and Innovation, Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), project number PN-III-P4-ID-PCE-2016-0431, Contract no. 148/2017 (CELL-3D) within PNCDI III.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denis Mihaela Panaitescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panaitescu, D.M., Frone, A.N., Chiulan, I. et al. Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites. Cellulose 25, 5569–5591 (2018). https://doi.org/10.1007/s10570-018-1980-3

Download citation

Keywords

  • Green nanocomposites
  • Polyhydroxyoctanoates
  • Bacterial cellulose
  • Thermal properties
  • SEM
  • Morphology