Skip to main content
Log in

Effect of graphene oxide on thermal stability of aerogel bio-nanocomposite from cellulose-based waste biomass

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

By combining the waste of oil palm empty fruit bunch (EFB) and graphene oxide (GO), a GO/cellulose aerogel bio-nanocomposite was produced via a simple mixing method. The thermal properties of this nanocomposite were examined using thermogravimetric analysis (TGA), and the GO/cellulose aerogel bio-nanocomposite exhibited good thermal stability indicated by a delay in the degradation of the nanocomposite even at low GO incorporation. Experimental and modeled TGA curves were compared. The morphology of the GO/cellulose aerogel composite was observed under field emission scanning electron microscope. In GO/cellulose aerogel composite with 4 wt% GO, the pore volume and porosity decreased by more than 50% compared to aerogel without GO, and the density of the 4 wt% GO/cellulose aerogel composite showed a onefold increase compared with the pure cellulose aerogel. The degree of swelling and equilibrium-swelling ratio of regenerated GO/cellulose hydrogel and aerogel decreased with the higher GO concentration. The phase transition from EFB to regenerated GO/cellulose aerogel composite was evaluated using X-ray diffraction. This study has provided a simple pathway to produce environmentally friendly biocomposite materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: a
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadzadeh A, Zakaria S (2007) Kinetics of oil palm empty fruit bunch phenolysis in the presence of sulfuric acid as a catalyst. J Appl Polym Sci 106:3529–3533

    Article  CAS  Google Scholar 

  • Ahmed EM (2013) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azahari NA, Zakaria S, Kaco H, Gan S, Chia CH, Jaafar SNS, Sajab MS (2017) Membran Selulosa Kenaf Terjana Semula daripada Larutan Akues NaOH/Urea yang Digumpal Menggunakan Asid Sulfurik. Sains Malays 46:795–801

    Article  Google Scholar 

  • Chen RS, Ahmad S, Gan S, Salleh MN, Ab Ghani MH, Tarawneh MAA (2016a) Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochim Acta 640:52–61. https://doi.org/10.1016/j.tca.2016.08.005

    Article  CAS  Google Scholar 

  • Chen X, Zhou S, Zhang L, You T, Xu F (2016b) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9:1–15

    CAS  Google Scholar 

  • Chozhan CK, Alagar M, Gnanasundaram P (2009) Synthesis and characterization of 1,1-bis(3-methyl-4-hydroxy phenyl)cyclohexane polybenzoxazine-organoclay hybrid nanocomposites. Acta Mater 57:782–795

    Article  CAS  Google Scholar 

  • Ding Z-D, Chi Z, Gu W-X, Gu S-M, Liu J-H, Wang H-J (2012) Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydr Polym 89:7–16. https://doi.org/10.1016/j.carbpol.2012.01.080

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn SJ et al (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131. https://doi.org/10.1023/A:1017512029696

    Article  CAS  Google Scholar 

  • Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649. https://doi.org/10.1016/j.carbpol.2011.08.039

    Article  CAS  Google Scholar 

  • French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Chia CH, Chen RS, Jeyalaldeen N (2015) Physico-mechanical properties of a microwave-irradiated kenaf carbamate/graphene oxide membrane. Cellulose 22:3851–3863

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Chen RS, Chia CH, Padzil FNM, Moosavi S (2017a) Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated bio-based materials. Mater Chem Phys 192:181–189. https://doi.org/10.1016/j.matchemphys.2017.01.012

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Chia CH, Chen RS, Ellis AV, Kaco H (2017b) Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE 12:e0173743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan S, Zakaria S, Jaafar SNS (2017c) Enhanced mechanical properties of hydrothermal carbamated cellulose nanocomposite film reinforced with graphene oxide. Carbohydr Polym 172:248–293

    Article  CAS  Google Scholar 

  • Gorgolis G, Galiotis C (2017) Graphene aerogels: a review. 2D Mater 4:032001–032021

    Article  CAS  Google Scholar 

  • Han D, Yan L, Chen W, Li W (2011a) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658. https://doi.org/10.1016/j.carbpol.2010.08.038

    Article  CAS  Google Scholar 

  • Han D, Yan L, Chen W, Li W, Bangal PR (2011b) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972. https://doi.org/10.1016/j.carbpol.2010.09.006

    Article  CAS  Google Scholar 

  • Huang Q, Xu M, Sun R, Wang X (2016) Large scale preparation of graphene oxide/cellulose paper with improved mechanical performance and gas barrier properties by conventional papermaking method. Ind Crops Prod 85:198–203. https://doi.org/10.1016/j.indcrop.2016.03.006

    Article  CAS  Google Scholar 

  • Li W, Wu Y, Liang W, Li B, Liu S (2014) Reduction of the water wettability of cellulose film through controlled heterogeneous modification. ACS Appl Mater Interfaces 6:5726–5734

    Article  CAS  PubMed  Google Scholar 

  • Liao Q, Su X, Zhu W, Hua W, Qian Z, Liu L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation RSC. Advances 6:63773–63781

    CAS  Google Scholar 

  • Lindman B, Medronho B, Alves L, Costa C, Edlund H, Norgren M (2017) The relevance of cellulose structural features and interactions on dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys 19:23704–23718

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198

    Article  CAS  Google Scholar 

  • Liu X, Zhang T, Pang K, Duan Y, Zhang J (2016) Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. RSC Adv 6:73358–73364. https://doi.org/10.1039/C6RA16535D

    Article  CAS  Google Scholar 

  • Liu S, Ling J, Li K, Yao F, Oderinde O, Zhang Z, Fu G (2017) Bio-inspired and lanthanide-induced hierarchical sodium alginate/graphene oxide composite paper with enhanced physicochemical properties. Compos Sci Technol 145:62–70. https://doi.org/10.1016/j.compscitech.2017.01.009

    Article  CAS  Google Scholar 

  • Mohd Nor NS et al (2015) Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches. Energy 79:183–194. https://doi.org/10.1016/j.energy.2014.11.002

    Article  CAS  Google Scholar 

  • Ng P, Chia CH, Zakaria S, Gan S, Kaco H, Padzil FNM, Chook SW (2015) Preparation of cellulose hydrogel from oil palm empty fruit bunch fibers cellulose. Polym Res J 9:449

    CAS  Google Scholar 

  • Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–509. https://doi.org/10.1016/j.carbon.2013.06.049

    Article  CAS  Google Scholar 

  • Padzil FNM, Zakaria S, Chia CH, Jaafar SNS, Kaco H, Gan S, Ng P (2015) Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline–urea systems. Carbohydr Polym 124:164–171. https://doi.org/10.1016/j.carbpol.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266. https://doi.org/10.1021/cr0101306

    Article  CAS  PubMed  Google Scholar 

  • Poyraz B, Tozluoğlu A, Candan Z, Demir A (2017a) Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J Polym Eng. https://doi.org/10.1515/polyeng-2017-0022

    Article  Google Scholar 

  • Poyraz B, Tozluoğlu A, Candan Z, Demir A, Yavuz M (2017b) Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of celluclast-treated nanofibrillated cellulose composites. Int J Biol Macromol 104:384–392

    Article  CAS  PubMed  Google Scholar 

  • Sang YO et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  CAS  Google Scholar 

  • Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464. https://doi.org/10.1016/j.carbpol.2017.12.068

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Lu L, Guo W, Liu M, Cao Y (2015) On preparation, structure and performance of high porosity bulk cellulose aerogel. Plast Rubber Compos 44:26–32

    Article  CAS  Google Scholar 

  • Tiwari JN, Mahesh K, Le NH, Kemp KC, Timilsina R, Tiwari RN, Kim KS (2013) Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56:173–182

    Article  CAS  Google Scholar 

  • Tozluoglu A, Poyraz B, Candan Z (2018) Examining the efficiency of mechanic/enzymatic pretreatments in micro/nanofibrillated cellulose production. Maderas Cienc Tecnol 20:67–84

    Google Scholar 

  • Tozluoğlu A, Poyraz B, Candan Z, Yavuz M, Arslan R (2017) Biofilms from micro/nanocellulose of \hbox NaBH_{4}-modified kraft pulp. Bull Mater Sci 40:699–710

    Article  CAS  Google Scholar 

  • Tozluoğlu A et al (2018) TEMPO-treated CNF composites: pulp and matrix effect. Fibers Polym 19:195. https://doi.org/10.1007/s12221-018-7673-y

    Article  CAS  Google Scholar 

  • Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399

    Article  CAS  Google Scholar 

  • Yadav M, Rhee K, Jung I, Park S (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698

    Article  CAS  Google Scholar 

  • Yan H, Tao X, Yang Z, Li K, Yang H, Li A, Cheng R (2014) Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J Hazard Mater 268:191–198

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Lu Y, Wang Y, Hu L (2014) Effect of graphene oxide on the solution rheology and the film structure and properties of cellulose carbamate. Carbon 69:552–562. https://doi.org/10.1016/j.carbon.2013.12.066

    Article  CAS  Google Scholar 

  • Zhang J, Cao Y, Feng J, Wu P (2012a) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Zheng W, Zhu J (2012b) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88:26–30. https://doi.org/10.1016/j.carbpol.2011.11.054

    Article  CAS  Google Scholar 

  • Zhang H et al (2017a) Facile cellulose dissolution and characterization in the newly synthesized 1,3-diallyl-2-ethylimidazolium acetate ionic liquid. Polymers 9:526

    Article  CAS  Google Scholar 

  • Zhang X, Jing S, Chen Z, Zhong L, Liu Q, Peng X, Sun R (2017b) Fabricating 3D hierarchical porous TiO2 and SiO2 with high specific surface area by using nanofibril-interconnected cellulose aerogel as a new biotemplate. Ind Crops Prod 109:790–802. https://doi.org/10.1016/j.indcrop.2017.09.047

    Article  CAS  Google Scholar 

  • Zhu J, Wilkie CA (2000) Thermal and fire studies on polystyrene–clay nanocomposites. Polym Int 49:1158–1163

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Universiti Kebangsaan Malaysia (Grant Nos DIP-2016-004 and MRUN-2015-003)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sinyee Gan or Sarani Zakaria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, S., Zakaria, S., Chia, C.H. et al. Effect of graphene oxide on thermal stability of aerogel bio-nanocomposite from cellulose-based waste biomass. Cellulose 25, 5099–5112 (2018). https://doi.org/10.1007/s10570-018-1946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1946-5

Keywords

Navigation