Skip to main content
Log in

Fabrication of patterned cellulose film via solvent-assisted soft nanoimprint lithography at a submicron scale

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Solvent-assisted soft nanoimprint lithography of cellulose nanocrystals (CNCs) has been applied to easily fabricate nano-/microscale structured cellulose films of various structures, including line gratings and pillar patterns. The cellulose-based ink consisted of CNCs, citric acid, and sodium hypophosphite monohydrate. After imprinting with a crosslinked poly(dimethylsiloxane) stamp (PDMS), the patterned CNC films were crosslinked via the citric acid present under mild heat treatment. In order to obtain well-defined ultra-small structures, two different modification methods were applied to optimize the wettability between the CNC dispersions and the PDMS stamp. With this modification, CNC films could be patterned on various substrates by either direct imprint or reversal imprint methods. The dimensions of the patterned features in the cellulose films was as small as 140 nm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Carman ML et al (2006) Engineered antifouling microtopographies–correlating wettability with cell attachment. Biofouling 22:11–21

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Huang K, Wang P, He L, Carter KR, Nugen SR (2015) Nanoimprinted patterned pillar substrates for surface-enhanced Raman scattering applications. ACS Appl Mater Interfaces 7:22106–22113

    Article  CAS  PubMed  Google Scholar 

  • Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87

    Article  CAS  Google Scholar 

  • de Cuadro P, Belt T, Kontturi KS, Reza M, Kontturi E, Vuorinen T, Hughes M (2015) Cross-linking of cellulose and poly (ethylene glycol) with citric acid. React Funct Polym 90:21–24

    Article  CAS  Google Scholar 

  • Ding Y, Weng L-T, Yang M, Yang Z, Lu X, Huang N, Leng Y (2014) Insights into the aggregation/deposition and structure of a polydopamine film. Langmuir 30:12258–12269

    Article  CAS  PubMed  Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki Y et al (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663

    Article  CAS  Google Scholar 

  • Ganner T et al (2016) Direct-write fabrication of cellulose nano-structures via focused electron beam induced nanosynthesis. Sci Rep 6:32451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A (2015) Cellulose nanocrystal: a promising toughening agent for unsaturated polyester nanocomposite. Polymer 56:346–357

    Article  CAS  Google Scholar 

  • Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Funct Mater 23:308–315

    Article  CAS  Google Scholar 

  • Kirschner CM, Brennan AB (2012) Bio-inspired antifouling strategies. Annu Rev Mater Sci 42:211–229

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  PubMed  Google Scholar 

  • Kothari R, Beaulieu MR, Hendricks NR, Li S, Watkins JJ (2017) Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chem Mater 29:3908–3918

    Article  CAS  Google Scholar 

  • Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80

    Article  CAS  Google Scholar 

  • Lee SH, Ha NY (2011) Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes. Opt Express 19:21803–21808

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2011) Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl Phys Lett 98:151102

    Article  CAS  Google Scholar 

  • Li Y, Dai S, John J, Carter KR (2013a) Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Appl Mater Interfaces 5:11066–11073

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Peterson JJ, Jhaveri SB, Carter KR (2013b) Patterned polymer films via reactive silane infusion-induced wrinkling. Langmuir 29:4632–4639

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä T, Kainlauri M, Willberg-Keyriläinen P, Tammelin T, Forsström U (2016) Fabrication of micropillars on nanocellulose films using a roll-to-roll nanoimprinting method. Microelectron Eng 163:1–6

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Müller-Meskamp L et al (2012) Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv Mater 24:906–910

    Article  CAS  PubMed  Google Scholar 

  • Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320

    Article  CAS  Google Scholar 

  • Park JY, Hendricks NR, Carter KR (2011) Solvent-assisted soft nanoimprint lithography for structured bilayer heterojunction organic solar cells. Langmuir 27:11251–11258

    Article  CAS  PubMed  Google Scholar 

  • Raucci M, Alvarez-Perez M, Demitri C, Giugliano D, De Benedictis V, Sannino A, Ambrosio L (2015) Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J Biomed Mater Res A 103:2045–2056

    Article  CAS  PubMed  Google Scholar 

  • Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Salmieri S et al (2014) Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: Part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21:1837–1850

    Article  CAS  Google Scholar 

  • Takei S, Maki H, Sugahara K, Ito K, Hanabata M (2015) Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography. AIP Adv 5:077141

    Article  CAS  Google Scholar 

  • Wang D et al (2014) Polydopamine hydrophilic modification of polypropylene separator for lithium ion battery. J Appl Polym Sci. https://doi.org/10.1002/app.40543

    Article  Google Scholar 

  • Widsten P, Dooley N, Parr R, Capricho J, Suckling I (2014) Citric acid crosslinking of paper products for improved high-humidity performance. Carbohydr Polym 101:998–1004

    Article  CAS  PubMed  Google Scholar 

  • Wolfberger A et al (2015) Photolithographic patterning of cellulose: a versatile dual-tone photoresist for advanced applications. Cellulose 22:717–727

    Article  CAS  PubMed  Google Scholar 

  • Yagyu H, Saito T, Isogai A, Koga H, Nogi M (2015) Chemical modification of cellulose nanofibers for the production of highly thermal resistant and optically transparent nanopaper for paper devices. ACS Appl Mater Interfaces 7:22012–22017

    Article  CAS  PubMed  Google Scholar 

  • Yu X et al (2012) Direct patterning of engineered ionic gold nanoparticles via nanoimprint lithography. Adv Mater 24:6330–6334

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the BASF North American Center for Research on Advanced Materials (NORA). The authors thank Dr. Marc Schroeder at BASF for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth R. Carter or James J. Watkins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, Y., Dundar, F. et al. Fabrication of patterned cellulose film via solvent-assisted soft nanoimprint lithography at a submicron scale. Cellulose 25, 5185–5194 (2018). https://doi.org/10.1007/s10570-018-1920-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1920-2

Keywords

Navigation