Skip to main content
Log in

Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Textile manufacturing industries produce large amounts of viscose fiber wastes (VFW), causing serious environmental pollution. This study presents an acid-free approach to prepare spherical cellulose nanocrystals (SCNs) with carboxyl groups from industrial VFW by one-step hydrothermal ammonium persulfate (APS) oxidation. Novel double-response surface methodology was employed to optimize the reaction conditions. A maximum yield (37.89%) of carboxylated SCN was obtained at reaction time of 4 h, APS concentration of 1 M and temperature of 80 °C, while the SCNs showed gradual size reductions along with increase of carboxyl contents as reaction time and APS concentration increased. Interestingly, it was possible to obtain carboxylated SCNs in only 2 h of reaction with an increase of 16.5% in the crystallinity index, which was attributed to efficient swelling of cellulose chains and oxidation interaction of surface groups under hydrothermal condition. Compared with SCN-2 h, the crystallinity index and maximum degradation temperature of SCN-10 h were improved by 5.5% and 17.9 °C, respectively. Moreover, SCN-10 h exhibited excellent emulsifying capacity to stabilize soybean oil/water Pickering emulsion droplets and emulsion volume were increased with decreased mean diameter of emulsion droplets as SCN-10 h concentration increased. These results indicate that VFW is an attractive source to produce carboxylated SCNs by APS oxidation, making SCN extraction as value-added alternatives to recycle this waste. Such carboxylated SCNs have great potentials as green food Pickering emulsion stabilizers and nanofillers in high-performance composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angkuratipakorn T, Sriprai A, Tantrawong S, Chaiyasit W, Singkhonrat J (2017) Fabrication and characterization of rice bran oil-in-water Pickering emulsion stabilized by cellulose nanocrystals. Colloids Surf Physicochem Eng Asp 522:310–319

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf Physicochem Eng Asp 142:75–82

    Article  CAS  Google Scholar 

  • Buffiere J, Balogh-Michels Z, Borrega M, Geiger T, Zimmermann T, Sixta H (2017) The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydr Polym 178:48–56

    Article  CAS  PubMed  Google Scholar 

  • Cao S-L, Huang Y-M, Li X-H, Xu P, Wu H, Li N, Lou W-Y, Zong M-H (2016) Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals. Sci Rep 6:20420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258

    Article  CAS  Google Scholar 

  • Cheng M, Qin Z, Chen Y, Liu J, Ren Z (2017) Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24:3243–3254

    Article  CAS  Google Scholar 

  • Chevalier Y, Bolzinger M-A (2013) Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf Physicochem Eng Asp 439:23–34

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583

    Article  CAS  Google Scholar 

  • George J, Ramana K, Bawa A (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57

    Article  CAS  PubMed  Google Scholar 

  • Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    Article  CAS  Google Scholar 

  • Henrique MA, Neto WPF, Silvério HA, Martins DF, Gurgel LVA, da Silva Barud H, de Morais LC, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crop Prod 76:128–140

    Article  CAS  Google Scholar 

  • Hu Z, Patten T, Pelton R, Cranston ED (2015) Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals. ACS Sustain Chem Eng 3:1023–1031

    Article  CAS  Google Scholar 

  • Jia X, Xu R, Shen W, Xie M, Abid M, Jabbar S, Wang P, Zeng X, Wu T (2015) Stabilizing oil-in-water emulsion with amorphous cellulose. Food Hydrocoll 43:275–282

    Article  CAS  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99

    Article  CAS  Google Scholar 

  • Kalashnikova I, Bizot H, Cathala B, Capron I (2011) New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27:7471–7479

    Article  CAS  PubMed  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kasiri N, Fathi M (2018) Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int J Biol Macromol 106:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  PubMed  Google Scholar 

  • Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80

    Article  CAS  Google Scholar 

  • Lam E, Leung AC, Liu Y, Majid E, Hrapovic S, Male KB, Luong JH (2012) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of by products. ACS Sustain Chem Eng 1(2):278–283

    Article  CAS  Google Scholar 

  • Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JH (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  PubMed  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromol 13:1592–1597

    Article  CAS  Google Scholar 

  • Lin N, Bruzzese CC, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Inter 4:4948–4959

    Article  CAS  Google Scholar 

  • Lu F, Yu H, Zhou Y, Yao J (2016) Spherical and rod-like dialdehyde cellulose nanocrystals by sodium periodate oxidation: optimization with double response surface model and templates for silver nanoparticles. Express Polym Lett 10:965

    Article  CAS  Google Scholar 

  • Majumder A, Singh A, Goyal A (2009) Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr Polym 75:150–156

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    Article  CAS  Google Scholar 

  • Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crop Prod 93:227–234

    Article  CAS  Google Scholar 

  • Oun AA, Rhim JW (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492

    Article  CAS  PubMed  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Medeiros E, Malmonge J, Gregorski K, Wood D, Mattoso L, Glenn G, Orts W, Imam S (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  • Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798–19805

    Article  CAS  Google Scholar 

  • Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microb Technol 52:20–25

    Article  CAS  PubMed  Google Scholar 

  • Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from soybeancob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436

    Article  CAS  Google Scholar 

  • Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink H-P, Röder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11(1):73–83

    Article  CAS  Google Scholar 

  • Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    Article  CAS  Google Scholar 

  • Sun B, Yu HY, Zhou Y, Huang Z, Yao JM (2016) Single-step extraction of functionalized cellulose nanocrystal and polyvinyl chloride from industrial wallpaper wastes. Ind Crop Prod 89:66–77

    Article  CAS  Google Scholar 

  • Tang LR, Huang B, Ou W, Chen XR, Chen YD (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102:10973–10977

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2010) Fiber and textile waste utilization. Waste biomass valoriz 1:135–143

    Article  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Wang L, Yang B, Du X, Yang Y, Liu J (2008) Optimization of conditions for extraction of acid-soluble collagen from grass carp (Ctenopharyngodon idella) by response surface methodology. Innov Food Sci Emerg Technol 9:604–607

    Article  CAS  Google Scholar 

  • Wang W, Du G, Li C, Zhang H, Long Y, Ni Y (2016) Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydr Polym 151:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yao Z, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952

    Article  CAS  PubMed  Google Scholar 

  • Yalcinkaya E, Puglia D, Fortunati E, Bertoglio F, Bruni G, Visai L, Kenny J (2017) Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films. Carbohydr Polym 157:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Yan C-F, Yu H-Y, Yao J-M (2015) One-step extraction and functionalization of cellulose nanospheres from lyocell fibers with cellulose II crystal structure. Cellulose 22:3773–3788

    Article  CAS  Google Scholar 

  • Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025

    Article  CAS  Google Scholar 

  • Yu HY, Qin ZY (2014) Surface grafting of cellulose nanocrystals with poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  • Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643

    Article  CAS  Google Scholar 

  • Yu HY, Zhang H, Song ML, Zhou Y, Yao J, Ni QQ (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Inter 9:43920–43938

    Article  CAS  Google Scholar 

  • Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr Polym 138:237–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was funded by Candidates Of Young And Middle Aged Academic Leader of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-Yong Yu.

Ethics declarations

Conflict of interest

Authors declare they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Yu, HY., Wang, D. et al. Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25, 5139–5155 (2018). https://doi.org/10.1007/s10570-018-1917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1917-x

Keywords

Navigation