Skip to main content

Advertisement

Log in

Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

With excellent biological, physical and chemical properties of cellulose nanocrystals, a novel colon-targeted drug release system was created by conjugating of model drug (tosufloxacintosilate, TFLX) with maleic anhydride cellulose nanocrystals (MCNCs), in which l-leucine was used as a spacer molecule. The satisfactory drug loading of 29.14% as well as high encapsulation efficiency of 99.84% were obtained. The hydrodynamic diameters of MCNCs, drug (TFLX) and drug conjugates are 124, 491 and 520 nm, respectively, which demonstrates that MCNCs might adhere to the surface of drug tightly. The successful linking of l-leucine to MCNCs and amidation reaction between drug and A-MCNCs were confirmed by FTIR and XPS spectra. Moreover, the release behaviors of drug conjugates and fluorescent-labeled drug conjugates in simulated fluids were investigated by in vitro study and fluorescence detection. It is found that the drug conjugates could release about 72.55% of the drug loaded in the simulated colon fluid with enzyme lysozyme after 30 h, but no drug was detected in simulated gastric fluids with enzyme pepsin. The results illustrate that the model drug could be entrapped efficiently by MCNCs and have an excellent behavior for colon-targeted release. The paper reveals that cellulose nanocrystals can be considered potential carriers in colon specific drug delivery system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal T, Gautham Hari Narayana SN, Pal K, Pramanik K, Giri S, Banerjee I (2015) Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol 75:409–417

    Article  CAS  PubMed  Google Scholar 

  • Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1746–1747

    Article  CAS  Google Scholar 

  • Alila S, Ferraria AM, do Rego AMB, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N, N′-carbonyldiimidazole as activator. Carbohyd Polym 77:553–562

    Article  CAS  Google Scholar 

  • Amidon S, Brown JE, Dave VS (2015) Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 16(4):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barazzouk S, Daneault C (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493

    Article  CAS  Google Scholar 

  • Basit AW (2005) Advances in colonic drug delivery. Drugs 65(14):1991–2007

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Yang L, Zhang L, Wu Q (2009) Synthesis and anaerobic biodegradation of indomethacin-conjugated cellulose ethers used for colon-specific drug delivery. Bioresour Technol 100:4164–4170

    Article  CAS  PubMed  Google Scholar 

  • Charbe NB, McCarron PA, Lane ME, Tambuwala MM (2017) Application of three-dimensional printing for colon targeted drug delivery systems. Int J Pharm Investig 7(2):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C (2009) Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules 10:1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Deng F, Liu Y (2012) Study of the interaction between tosufloxacin tosylate and bovine serum albumin by multi-spectroscopic methods. J Lumin 132:443–448

    Article  CAS  Google Scholar 

  • Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15(5):1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Edwards C (1997) Physiology of the colorectal barrier. Adv Drug Deliv Rev 28(2):173–190

    Article  CAS  Google Scholar 

  • Endes C, Mueller S, Kinnear C, Vanhecke D, Johan Foster E, Petri-Fink A, Weder C, Clift MJD, Rothen-Rutishauser B (2015) Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromolecules 16:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Ewe K, Schwartz S, Petersen S, Press AG (1999) Inflammation does not decrease intraluminal pH in chronic inflammatory bowel disease. Dig Dis Sci 44(7):1434–1439

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Rodríguez SA, Allemann E, Fessi H, Doelker E (2005) Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 22:419–463

    Article  PubMed  Google Scholar 

  • Gazzaniga A, Iamartino P, Maffione G, Sangalli ME (1994) Oral delayed-release system for colonic specific delivery. Int J Pharm 108(1):77–83

    Article  CAS  Google Scholar 

  • Hanif Z, Ahmed FR, Shin SW, Kim Y, Um SH (2014) Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf B 119:162–165

    Article  CAS  Google Scholar 

  • Hou L, Fang J, Wang W, Xie Z, Dongac D, Zhang N (2017) Indocyanine green-functionalized bottle brushes of poly(2-oxazoline) on cellulose nanocrystals for photothermal cancer therapy. J Mater Chem B 5:3348–3354

    Article  CAS  Google Scholar 

  • Ibekwe VC, Fadda HM, McConnell EL, Khela MK, Evans DF, Basit AW (2008) Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm Res 25(8):1828–1835

    Article  CAS  PubMed  Google Scholar 

  • Kinget R, Kalala W, Vervoort L, Mooter GU (1998) Colonic drug targeting. J Drug Target 6(2):129–149

    Article  CAS  PubMed  Google Scholar 

  • Kopečný J, Hajer J, Mrázek J (2004) Detection of cellulolytic bacteria from the human colon. Folia Microbiol 49(2):175–177

    Article  Google Scholar 

  • Koshani R, Madadlou A (2018) A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends Food Sci Technol 71:268–273

    Article  CAS  Google Scholar 

  • Kumar S, Negi YS, Ghosh MK, Choure K (2015) Renewable biopolymer-based excipients for colon drug delivery system: an overview. J Pharm Sci Res 7(3):166–174

    CAS  Google Scholar 

  • Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58:327–341

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2013) Supramolecular hydrogels from in Situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14:871–880

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Liu Y, Li K, Liu B, Feng S (2010) A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31:9145–9155

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Xiong G, Hu D, Ren K, Yao F, Zhu Y, Gao C, Wan Y (2013) Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater Chem Phys 143(1):373–379

    Article  CAS  Google Scholar 

  • Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191–201

    Article  CAS  Google Scholar 

  • McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Coll Interface Sci 159:213–228

    Article  CAS  Google Scholar 

  • Naseef H, Samaro A, Qurt MS, Nakhleh H, Kadamani N, Moqadi R, Enaya M (2016) Formulation and evaluation of oral biphasic drug delivery system of Metronidazole using HPMC polymer. Int J Pharm Sci Invent 5:22–30

    CAS  Google Scholar 

  • Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  PubMed  Google Scholar 

  • Oprea A, Profire L, Lupusoru CE, Ghiciuc CM, Ciolacu D, Vasile C (2012) Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery. Carbohyd Polym 87:721–729

    Article  CAS  Google Scholar 

  • Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Pachuau L, Mazumder B (2013) Colonic drug delivery systems based on natural polysaccharides and their evaluation. Mini Rev Med Chem 13:1982–1991

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Shah T, Amin A (2007) Therapeutic opportunities in colon-specific drug-delivery systems. Crit Rev Ther Drug Carrier Syst 24:147–202

    Article  CAS  PubMed  Google Scholar 

  • Philip AK, Philip B (2010) Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 25(2):79–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Qing W, Wang Y, Wang Y, Zhao D, Liu X, Zhu J (2016) The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci 366:404–409

    Article  CAS  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

  • Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33

    Article  CAS  Google Scholar 

  • Rosilo H, Mckee JR, Kontturi E, Koho T, Hytönen VP, Ikkala O, Kostiainen MA (2014) Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. Nanoscale 6:11871–11881

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein A (2000) Natural polysaccharides as targeting tools of drugs to the human colon. Drug Dev Res 50:435–439

    Article  CAS  Google Scholar 

  • Serra L, Domenechc J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Shah T, Amin A (2011) Polysaccharides: a targeting strategy for colonic drug delivery. Expert Opin Drug Deliv 8(6):779–796

    Article  CAS  PubMed  Google Scholar 

  • Sinha VR, Kumria R (2003) Microbially triggered drug delivery to the colon. Eur J Pharm Sci 18:3–18

    Article  CAS  PubMed  Google Scholar 

  • Takayaa T, Niwaa K, Muraokaa M, Ogitaa I, Nagaia N, Yanoa R, Kimuraa G, Yoshikawaa Y, Yoshikawab H, Takadaa K (1998) Importance of dissolution process on systemic availability of drugs delivered by colon delivery system. J Control Release 50(1–3):111–122

    Article  Google Scholar 

  • Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373

    Article  CAS  Google Scholar 

  • Tang L, Li T, Zhuang S, Lu Q, Li P, Huang B (2016) Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer. ACS Sustain Chem Eng 4:4842–4849

    Article  CAS  Google Scholar 

  • Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Roman M (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules 12:1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Xie Y, Zheng Q, Yao S (2009) A Novel, Potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Ind Eng Chem Res 48:5276–5284

    Article  CAS  Google Scholar 

  • Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151

    Article  CAS  PubMed  Google Scholar 

  • Zubavichus Y, Zharnikov M, Shaporenko A, Fuchs O, Weinhardt L, Heske C, Umbach E, Denlinger JD, Grunze M (2004) Soft X-ray induced decomposition of phenylalanine and tyrosine: a comparative study. J Phys Chem A 108(20):4557–4565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the generous financial support of Special Scientific Research Fund for Public Service Sectors of Forestry (Grant No. 201504603), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J01088), and Chemicals and Science Foundation for Distinguished Young Scholars of Fujian Agricultural and Forestry University (Grant No. xjq201422) and National Natural Science Foundation of China (Grant No. 31370560).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lirong Tang or Biao Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Lin, F., Li, T. et al. Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose 25, 4525–4536 (2018). https://doi.org/10.1007/s10570-018-1904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1904-2

Keywords

Navigation