, Volume 25, Issue 8, pp 4487–4497 | Cite as

Cellulose acetate fibres surface modified with AlOOH/Cu particles: synthesis, characterization and antimicrobial activity

  • O. V. Bakina
  • E. A. Glazkova
  • A. S. Lozhkomoev
  • M. I. Lerner
  • N. V. Svarovskaya
Original Paper


The AlOOH/Cu modified cellulose acetate fibres were prepared by a facile one-step method. First, the cellulose acetate fibres were treated in an aqueous suspension with the bimetallic Al/Cu nanoparticles, followed by their oxidation. Copper and copper intermetallides do not react with water, while the aluminum does with boehmite formation. During this process AlOOH/Cu particles consisting of boehmite nanosheets self-assembled into flower-like agglomerates, and copper-rich fragments with size of 2 nm were formed. These inclusions could be spread uniformly through the whole volume of nanosheets or form a solid spherical copper-rich core in the center of AlOOH/Cu particles. The AlOOH nanosheets provide an adhesive attachment of the particles on the surface of the cellulose acetate fibres, and the slow migration of copper ions through the shell into the surrounding medium. The morphology, physical and chemical properties of the materials were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, adsorption of nitrogen (BET method), Fourier transform infrared spectroscopy and electrophoretic mobility (ζ-potential measurement). The antibacterial activity of the hybrid fibrous sorbent prepared against Escherichia Coli and Staphylococcus Aureus was studied. Reduction of the concentration viable bacteria reached 100 % after exposure of the bacteria for 1 h to the hybrid fibrous absorbent.


Bimetallic Al/Cu nanoparticles AlOOH/Cu particles Cellulose acetate fibres Antimicrobial activity 



The present work was financially supported of the Russian Science Foundation (Project No. 17-79-20382).


  1. Alwitt RS (1974) The growth of hydrous oxide films on aluminum. J Electrochem Soc 121:1322–1328. CrossRefGoogle Scholar
  2. Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antibacterial propensity of ZnO nanoparticle. Sci Rep 5:9578. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arora B, Murar M, Dhumale V (2015) Antibacterial potential of TiO2 nanoparticles against MDR Pseudomonas aeruginosa. J Exp Nanosci 10:819–827. CrossRefGoogle Scholar
  4. Azzaoui K, Mejdoubi E, Lamhamdi L, Zaoui S, Berrabah M, Elidrissi A, Hammouti B, Fouda MMG, Al–Deyab SS (2015) Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr Polym 115:170–176. CrossRefPubMedGoogle Scholar
  5. Bakina OV, Svarovskaya NV, Glazkova EA, Lozhkomoev AS, Khorobraya EG, Lerner MI (2015) Flower-shaped AlOOH nanostructures synthesized by the reaction of an AlN/Al composite nanopowder in water. Adv Powder Technol 26:1512–1519. CrossRefGoogle Scholar
  6. Banach DB, Bearman GM, Morgan DJ, Munoz-Price LS (2015) Infection control precautions for visitors to healthcare facilities. Expert Rev Anti Infect Ther 13:1047–1050. CrossRefPubMedGoogle Scholar
  7. Bishop WM, Rodgers JHJ (2012) Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept. Arch Environ Contam Toxicol 62:403–410. CrossRefPubMedGoogle Scholar
  8. Borkow G, del Carmen Elías A (2016) Facial skin lifting and brightening following sleep on copper oxide containing pillowcases. Cosmetics 3:24. CrossRefGoogle Scholar
  9. Bunker BC, Nelson GC, Zavadil KR, Barbour JC, Wall FD, Sullivan JP, Windisch CF Jr, Engelhardt MH, Baer DR (2002) Hydration of passive oxide films on aluminum. J Phys Chem B 106:4705–4713. CrossRefGoogle Scholar
  10. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101. CrossRefPubMedGoogle Scholar
  11. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389. CrossRefGoogle Scholar
  12. El-Nahhal IM, Zourab SM, Kodeh FS, Selmane M, Genois I, Babonneau F (2012) Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications. Int Nano Lett 2:14. CrossRefGoogle Scholar
  13. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antibacterial surface. Appl Environ Bacteriol 77:1541–1547. CrossRefGoogle Scholar
  14. Heliopoulos NS, Papageorgiou SK, Galeou A, Favvas EP, Katsaros FK, Stamatakis K (2013) Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf Coat Technol 235:24–31. CrossRefGoogle Scholar
  15. Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, Liang XJ, Rotello VM (2016) Fully zwitterionic nanoparticle antibacterial agents through tuning of core size and ligand structure. ACS Nano 10:8732–8737. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Khan SA, Shahid S, Sajid MR, Noreen F, Kanwal S (2017) Biogenic synthesis of CuO nanoparticles and their biomedical applications: a current review. Int J Adv Res 5(6):925–946. CrossRefGoogle Scholar
  17. Li YL, Deletic A, McCarthy DT (2014) Removal of E.coli from urban stormwater using antibacterial-modified filter media. J Hazard Mater 24:73–81. CrossRefGoogle Scholar
  18. Li HH, Chen QS, Zhao JW, Urmila K (2015) Enhancing the antibacterial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5:11033. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liu H, Lee YY, Norsten TB, Chong K (2014) In situ formation of anti-bacterial silver nanoparticles on cotton textiles. J Ind Text 44:198–210. CrossRefGoogle Scholar
  20. Lyakishev NP (1996) State Diagrams of Double Metallic Systems [in Russian], MoscowGoogle Scholar
  21. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604. CrossRefPubMedGoogle Scholar
  22. Palza H (2015) Antibacterial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204:54–57. CrossRefGoogle Scholar
  24. Perelshtein I, Ruderman Y, Beddow J, Singh G, Vinatoru M, Joyce E, Mason TJ, Blanes M, Mollá K, Gedanken A (2013) The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties. Cellulose 20:1215–1221. CrossRefGoogle Scholar
  25. Qin Y (2016) Medical textile materials. Elsevier, UKGoogle Scholar
  26. Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomed 5:282–286. CrossRefGoogle Scholar
  27. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Bacteriol 305:85–95. CrossRefGoogle Scholar
  28. Svarovskaya NV, Berenda AV, Bakina OV, Glazkova EA, Lozhkomoev AS, Khorobraya EG, Domashenko VV, Lerner MI, Fomenko AN (2015) Chemical behaviour of Al/Cu nanoparticles in water. Prog Nat Sci 25:1–5. CrossRefGoogle Scholar
  29. Svarovskaya NV, Bakina OV, Glazkova EA, Fomenko AN (2017) Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption. Prog Nat Sci 27:274–286. CrossRefGoogle Scholar
  30. Tegenaw A, Tolaymat T, Al-Abed S, El Badawy A, Luxton T, Sorial G, Genaidy A (2015) Characterization and potential environmental implications of select Cu-Based fungicides and bactericides employed in US markets. Environ Sci Technol 49:1294–1302. CrossRefPubMedGoogle Scholar
  31. Vedder W, Vermilyea DA (1961) Aluminum + water reaction. Trans Faraday Soc 65:561–584. CrossRefGoogle Scholar
  32. Wang J, Li L, Xiong D, Wang R, Zhao D, Min C, Yu Y, Ma L (2007) High spatially resolved morphological, structural and spectroscopical studies on copper oxide nanocrystals. Nanotechnology 18:075705. CrossRefPubMedGoogle Scholar
  33. Xiong L, Tong ZH, Chen JJ, Li LL, Yu HQ (2015) Morphology-dependent antibacterial activity of Cu/CuxO nanoparticles. Ecotoxicology 24:2067–2072. CrossRefPubMedGoogle Scholar
  34. Zhang F, Wu X, Chen Y, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym 10:496–501. CrossRefGoogle Scholar
  35. Zhang YX, Jin YJZ, Yu XY, Xu WH, Luo T, Zhu BJ, Liu JH, Huang XJ (2012) Self-assembled, monodispersed, flowerlike γ-AlOOH hierarchical superstructures for greatly fast removal of heavy metal ions with high efficiency. Cryst Eng Comm 9:3005–3007. CrossRefGoogle Scholar
  36. Zhang G, Liu Y, Morikawa H, Chen Y (2013) Application of ZnO nanoparticles to enhance the antibacterial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 20:1877–1884. CrossRefGoogle Scholar
  37. Zhang YY, Xu QB, Fu FY, Liu XD (2016) Durable antibacterial cotton textiles modified with inorganic nanoparticles. Cellulose 23:2791–2808. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • O. V. Bakina
    • 1
  • E. A. Glazkova
    • 1
  • A. S. Lozhkomoev
    • 1
  • M. I. Lerner
    • 1
  • N. V. Svarovskaya
    • 1
  1. 1.Institute of Strength Physics and Materials Science SB RASTomskRussia

Personalised recommendations