Atila D, Keskin D, Tezcaner A (2015) Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr Polym 133:251–261. https://doi.org/10.1016/j.carbpol.2015.06.109
PubMed
CAS
Article
Google Scholar
Ávila HM, Schwarz S, Rotter N, Gatenholm P (2016) 3d bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 1:22–35. https://doi.org/10.1016/j.bprint.2016.08.003
Article
Google Scholar
Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3d bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333. https://doi.org/10.1002/adhm.201500677
PubMed
CAS
Article
Google Scholar
Celzard A, Fierro V, Kerekes R (2009) Flocculation of cellulose fibres: new comparison of crowding factor with percolation and effective-medium theories. Cellulose 16(6):983–987. https://doi.org/10.1007/s10570-009-9314-0
CAS
Article
Google Scholar
Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, Cai W, Tao T, Xiang X (2017) Fused deposition modeling (fdm) 3d printed tablets for intragastric floating delivery of domperidone. Sci Rep 7:2829. https://doi.org/10.1038/s41598-017-03097-x
PubMed
PubMed Central
CAS
Article
Google Scholar
Chau M, Sriskandha SE, Pichugin D, Therien-Aubin H, Nykypanchuk D, Chauve G, Methot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromol 16(8):2455–2462. https://doi.org/10.1021/acs.biomac.5b00701
CAS
Article
Google Scholar
Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (cnc) using concentrated acid hydrolysis. Cellulose 22(3):1753–1762. https://doi.org/10.1007/s10570-015-0615-1
CAS
Article
Google Scholar
Chia HN, Wu BM (2015) Recent advances in 3d printing of biomaterials. J Biol Eng 9(1):4. https://doi.org/10.1186/s13036-015-0001-4
PubMed
PubMed Central
CAS
Article
Google Scholar
Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016) Advanced bioinks for 3d printing: a materials science perspective. Ann Biomed Eng 44(6):2090–2102. https://doi.org/10.1007/s10439-016-1638-y
PubMed
Article
Google Scholar
Chung JHY, Naficy S, Yue ZL, Kapsa R, Quigley A, Moulton SE, Wallace GG (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1(7):763–773. https://doi.org/10.1039/c3bm00012e
CAS
Article
Google Scholar
Correa D, Papadopoulou A, Guberan C, Jhaveri N, Reichert S, Menges A, Tibbits S (2015) 3d-printed wood: programming hygroscopic material transformations. 3D Print Addit Manuf 2(3):106–116. https://doi.org/10.1089/3dp.2015.0022
Article
Google Scholar
Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40(1):395–414. https://doi.org/10.1146/annurev-matsci-070909-104502
CAS
Article
Google Scholar
Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1(1):113–123. https://doi.org/10.15302/J-ENG-2015014
CAS
Article
Google Scholar
Dong J, Li M, Zhou L, Lee S, Mei C, Xu X, Wu Q (2017) The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly(lactic acid) filaments for 3d printing. J Polym Sci Part B Polym Phys 55(11):847–855. https://doi.org/10.1002/polb.24333
CAS
Article
Google Scholar
Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 35:299–320. https://doi.org/10.1016/j.nanoen.2017.04.001
CAS
Article
Google Scholar
Dumanli AG (2017) Nanocellulose and its composites for biomedical applications. Curr Med Chem 24(5):512–528. https://doi.org/10.2174/0929867323666161014124008
PubMed
CAS
Article
Google Scholar
Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9(6):1852–1863. https://doi.org/10.1039/c2sm27223g
CAS
Article
Google Scholar
Feng X, Yang Z, Chmely S, Wang Q, Wang S, Xie Y (2017) Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3d stereolithography printing: mechanical reinforcement and thermal stabilization. Carbohydr Polym 169:272–281. https://doi.org/10.1016/j.carbpol.2017.04.001
PubMed
CAS
Article
Google Scholar
Filgueira D, Holmen S, Melbø JK, Moldes D, Echtermeyer AT, Chinga-Carrasco G (2017) Enzymatic-assisted modification of thermomechanical pulp fibers to improve the interfacial adhesion with poly(lactic acid) for 3d printing. ACS Sustain Chem Eng 5(10):9338–9346. https://doi.org/10.1021/acssuschemeng.7b02351
CAS
Article
Google Scholar
Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3d printing of carbon materials for energy-related applications. Adv Mater 29(9):1603486. https://doi.org/10.1002/adma.201603486
CAS
Article
Google Scholar
Gao X, Shi Z, Kuśmierczyk P, Liu C, Yang G, Sevostianov I, Silberschmidt VV (2016) Time-dependent rheological behaviour of bacterial cellulose hydrogel. Mater Sci Eng C 58:153–159. https://doi.org/10.1016/j.msec.2015.08.019
CAS
Article
Google Scholar
Gatenholm P, Martinez H, Karabulut E, Amoroso M, Kölby L, Markstedt K, Gatenholm E, Henriksson I (2016) Development of nanocellulose-based bioinks for 3d bioprinting of soft tissue. In: Ovsianikov A, Yoo J, Mironov V (eds) 3d printing and biofabrication. Springer, Cham, pp 1–23. https://doi.org/10.1007/978-3-319-40498-1_14-1
Chapter
Google Scholar
Gibson I, Rosen DW, Stucker B (2015) Additive manufacturing technologies. Springer, New York. https://doi.org/10.1007/978-1-4939-2113-3
Book
Google Scholar
Giese M, Blusch LK, Khan MK, MacLachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed 54(10):2888–2910. https://doi.org/10.1002/anie.201407141
CAS
Article
Google Scholar
Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4d printing. Nat Mater 15(4):413–418. https://doi.org/10.1038/nmat4544
PubMed
CAS
Article
Google Scholar
Goole J, Amighi K (2016) 3d printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm 499(1–2):376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071
PubMed
CAS
Article
Google Scholar
Gross BC, Erkal JL, Lockwood SY, Chen CP, Spence DM (2014) Evaluation of 3d printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r
PubMed
CAS
Article
Google Scholar
Gunasekera DH, Kuek S, Hasanaj D, He Y, Tuck C, Croft AK, Wildman RD (2016) Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents. Faraday Discuss 190:509–523. https://doi.org/10.1039/c5fd00219b
PubMed
CAS
Article
Google Scholar
Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542. https://doi.org/10.1039/c3cs60204d
PubMed
CAS
Article
Google Scholar
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. https://doi.org/10.1021/cr900339w
PubMed
CAS
Article
Google Scholar
Håkansson KMO (2015) Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device. RSC Adv 5(24):18601–18608. https://doi.org/10.1039/c4ra12285b
Article
Google Scholar
Hakansson KM, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wagberg L, Soderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018. https://doi.org/10.1038/ncomms5018
PubMed
PubMed Central
CAS
Article
Google Scholar
Håkansson KM, Lundell F, Prahl-Wittberg L, Soderberg LD (2016a) Nanofibril alignment in flow focusing: measurements and calculations. J Phys Chem B 120(27):6674–6686. https://doi.org/10.1021/acs.jpcb.6b02972
PubMed
CAS
Article
Google Scholar
Håkansson KM, Henriksson IC, de la Peña Vázquez C, Kuzmenko V, Markstedt K, Enoksson P, Gatenholm P (2016b) Solidification of 3d printed nanofibril hydrogels into functional 3d cellulose structures. Adv Mater Technol 1(7):1600096. https://doi.org/10.1002/admt.201600096
CAS
Article
Google Scholar
He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J (2016) Research on the printability of hydrogels in 3d bioprinting. Sci Rep 6:29977. https://doi.org/10.1038/srep29977
PubMed
PubMed Central
CAS
Article
Google Scholar
Henke K, Treml S (2013) Wood based bulk material in 3d printing processes for applications in construction. Eur J Wood Wood Prod 71(1):139–141. https://doi.org/10.1007/s00107-012-0658-z
CAS
Article
Google Scholar
Henriksson I, Gatenholm P, Hägg DA (2017) Increased lipid accumulation and adipogenic gene expression of adipocytes in 3d bioprinted nanocellulose scaffolds. Biofabrication 9(1):015022. https://doi.org/10.1088/1758-5090/aa5c1c
PubMed
CAS
Article
Google Scholar
Hochleitner G, Jüngst T, Brown TD, Hahn K, Moseke C, Jakob F, Dalton PD, Groll J (2015) Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 7(3):035002. https://doi.org/10.1088/1758-5090/7/3/035002
PubMed
CAS
Article
Google Scholar
Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8(27):13131–13154. https://doi.org/10.1039/c6nr03054h
PubMed
CAS
Article
Google Scholar
Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3d bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002
PubMed
CAS
Article
Google Scholar
Hong JK (2015) Bioactive cellulose nanocrystal reinforced 3d printable poly (epsilon-caprolactone) nanocomposite for bone tissue engineering. Doctoral thesis, Virginia Polytechnic Institute and State University
Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5(4):6423–6435. https://doi.org/10.1039/C2EE02414D
Article
Google Scholar
Hu Z, Cranston ED, Ng R, Pelton R (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692. https://doi.org/10.1021/la404977t
PubMed
CAS
Article
Google Scholar
Hubbe MA, Tayeb P, Joyce M, Tyagi P, Kehoe M, Dimic-Misic K, Pal L (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. BioResources 12(4):9556–9661. https://doi.org/10.15376/biores.12.4.9556-9661
Article
CAS
Google Scholar
Isogai A, Bergström L (2018) Preparation of cellulose nanofibers using green and sustainable chemistry. Curr Opin Green Sustain Chem 12:15–21. https://doi.org/10.1016/j.cogsc.2018.04.008
Article
Google Scholar
Isogai A, Saito T, Fukuzumi H (2011) Tempo-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. https://doi.org/10.1039/c0nr00583e
PubMed
CAS
Article
Google Scholar
Jia C, Bian H, Gao T, Jiang F, Kierzewski IM, Wang Y, Yao Y, Chen L, Shao Z, Zhu JY, Hu L (2017a) Thermally stable cellulose nanocrystals toward high-performance 2d and 3d nanostructures. ACS Appl Mater Interfaces 9(34):28922–28929. https://doi.org/10.1021/acsami.7b08760
PubMed
CAS
Article
Google Scholar
Jia C, Chen L, Shao Z, Agarwal UP, Hu L, Zhu JY (2017b) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24(6):2483–2498. https://doi.org/10.1007/s10570-017-1277-y
CAS
Article
Google Scholar
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J (2016) Strategies and molecular design criteria for 3d printable hydrogels. Chem Rev 116(3):1496–1539. https://doi.org/10.1021/acs.chemrev.5b00303
PubMed
CAS
Article
Google Scholar
Kalsoom U, Nesterenko PN, Paull B (2016) Recent developments in 3d printable composite materials. RSC Adv 6(65):60355–60371. https://doi.org/10.1039/c6ra11334f
CAS
Article
Google Scholar
Kariz M, Sernek M, Kuzman MK (2015) Use of wood powder and adhesive as a mixture for 3d printing. Eur J Wood Wood Prod 74(1):123–126. https://doi.org/10.1007/s00107-015-0987-9
CAS
Article
Google Scholar
Kearns AJ (2017) Cotton cellulose fibers in 3d print material. Master Thesis, North Carolina State University
Kearns A, Farahbakhsh N, Venditti R, Jur J (2016) Cotton fibers in 3d printing. In: Solid Freeform Fabrication 2016: Proceedings of the 26th annual international solid freeform fabrication symposium—an additive manufacturing conference, pp 899–905
Kempin W, Franz C, Koster L-C, Schneider F, Bogdahn M, Weitschies W, Seidlitz A (2017) Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm 115(Supplement C):84–93. https://doi.org/10.1016/j.ejpb.2017.02.014
PubMed
CAS
Article
Google Scholar
Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3d printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 217(Supplement C):308–314. https://doi.org/10.1016/j.jconrel.2015.09.028
PubMed
CAS
Article
Google Scholar
Kirchmajer DM, Gorkin R III, In het Panhuis M (2015) An overview of the suitability of hydrogel-forming polymers for extrusion-based 3d-printing. J Mater Chem B 3(20):4105–4117. https://doi.org/10.1039/c5tb00393h
CAS
Article
Google Scholar
Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393. https://doi.org/10.1002/anie.200460587
PubMed
CAS
Article
Google Scholar
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. https://doi.org/10.1002/anie.201001273
CAS
Article
Google Scholar
Kumar S, Hofmann M, Steinmann B, Foster EJ, Weder C (2012) Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals. ACS Appl Mater Interfaces 4(10):5399–5407. https://doi.org/10.1021/am301321v
PubMed
CAS
Article
Google Scholar
Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS (2017) ‘Printability’ of candidate biomaterials for extrusion based 3d printing: state-of-the-art. Adv Healthc Mater 6(16):1700264. https://doi.org/10.1002/adhm.201700264
CAS
Article
Google Scholar
Lauri J, Koponen A, Haavisto S, Czajkowski J, Fabritius T (2017) Analysis of rheology and wall depletion of microfibrillated cellulose suspension using optical coherence tomography. Cellulose 24(11):4715–4728. https://doi.org/10.1007/s10570-017-1493-5
CAS
Article
Google Scholar
Le Duigou A, Castro M, Bevan R, Martin N (2016) 3d printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114. https://doi.org/10.1016/j.matdes.2016.02.018
Article
Google Scholar
Lee M, Kim H-Y (2014) Toward nanoscale three-dimensional printing: nanowalls built of electrospun nanofibers. Langmuir 30(5):1210–1214. https://doi.org/10.1021/la404704z
PubMed
CAS
Article
Google Scholar
Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3d-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater Interfaces 9(26):21959–21970. https://doi.org/10.1021/acsami.7b02756
PubMed
CAS
Article
Google Scholar
Li Y, Zhu H, Shen F, Wan J, Han X, Dai J, Dai H, Hu L (2014) Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv Funct Mater 24(46):7366–7372. https://doi.org/10.1002/adfm.201402129
CAS
Article
Google Scholar
Li T, Aspler J, Grenon J, Manfred T, Cormier LM, Zou X (2016a) Printed electronics and 3d printing as new manufacturing technologies-new opportunities for bio-based materials. In: NIP & digital fabrication conference. Society for imaging science and technology, pp 435–441
Li T, Aspler J, Kingsland A, Cormier LM, Zou X (2016b) 3d printing–a review of technologies, markets, and opportunities for the forest industry. J Sci Technol For Prod Process 5(2):30–37
CAS
Google Scholar
Li H, Tan YJ, Leong KF, Li L (2017a) 3d bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS Appl Mater Interfaces 9(23):20086–20097. https://doi.org/10.1021/acsami.7b04216
PubMed
CAS
Article
Google Scholar
Li VC-F, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017b) Direct ink write (diw) 3d printed cellulose nanocrystal aerogel structures. Sci Rep 7:8018. https://doi.org/10.1038/s41598-017-07771-y
PubMed
PubMed Central
Article
Google Scholar
Li Y, Zhu H, Wang Y, Ray U, Zhu S, Dai J, Chen C, Fu K, Jang SH, Henderson D (2017c) Cellulose-nanofiber-enabled 3d printing of a carbon-nanotube microfiber network. Small Methods 1(10):1700222. https://doi.org/10.1002/smtd.201700222
CAS
Article
Google Scholar
Li L, Zhu Y, Yang J (2018a) 3d bioprinting of cellulose with controlled porous structures from nmmo. Mater Lett 210:136–138. https://doi.org/10.1016/j.matlet.2017.09.015
CAS
Article
Google Scholar
Li VCF, Mulyadi A, Dunn CK, Deng Y, Qi HJ (2018b) Direct ink write 3d printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b03439
Article
Google Scholar
Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R (2017) Polymers for 3d printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074
PubMed
PubMed Central
CAS
Article
Google Scholar
Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N (2018) Applicability of protein and fiber-rich food materials in extrusion-based 3d printing. J Food Eng 220:20–27. https://doi.org/10.1016/j.jfoodeng.2017.04.034
CAS
Article
Google Scholar
Lundahl MJ, Klar V, Wang L, Ago M, Rojas OJ (2017) Spinning of cellulose nanofibrils into filaments: a review. Ind Eng Chem Res 56(1):8–19. https://doi.org/10.1021/acs.iecr.6b04010
CAS
Article
Google Scholar
Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028. https://doi.org/10.1002/adma.201302042
PubMed
CAS
Article
Google Scholar
Markstedt K, Sundberg J, Gatenholm P (2014) 3d bioprinting of cellulose structures from an ionic liquid. 3D Print Addit Manuf 1(3):115–121. https://doi.org/10.1089/3dp.2014.0004
Article
Google Scholar
Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D, Gatenholm P (2015) 3d bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496. https://doi.org/10.1021/acs.biomac.5b00188
CAS
Article
Google Scholar
Markstedt K, Escalante A, Toriz G, Gatenholm P (2017) Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3d printing. ACS Appl Mater Interfaces 9(46):40878–40886. https://doi.org/10.1021/acsami.7b13400
PubMed
CAS
Article
Google Scholar
Martinez D, Kiiskinen H, Ahlman A-K, Kerekes R (2003) On the mobility of flowing papermaking suspensions and its relationship to formation. J Pulp Pap Sci 29(10):341–347
CAS
Google Scholar
Mendoza L, Batchelor W, Tabor RF, Garnier G (2018) Gelation mechanism of cellulose nanofibre gels: a colloids and interfacial perspective. J Colloid Interface Sci 509(Supplement C):39–46. https://doi.org/10.1016/j.jcis.2017.08.101
PubMed
CAS
Article
Google Scholar
Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220. https://doi.org/10.1016/j.biomaterials.2015.12.020
PubMed
CAS
Article
Google Scholar
Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobarnunez E, Rojas Arciniegas AJ (2017) Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf (IJIDeM). https://doi.org/10.1007/s12008-017-0411-2
Article
Google Scholar
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. https://doi.org/10.1039/c0cs00108b
PubMed
CAS
Article
Google Scholar
Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M (2017) Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223. https://doi.org/10.1007/s10439-016-1704-5
PubMed
Article
Google Scholar
Murphy SV, Atala A (2014) 3d bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958
PubMed
CAS
Article
Google Scholar
Murphy CA, Collins MN (2016) Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3d printing. Polym Compos. https://doi.org/10.1002/pc.24069
Article
Google Scholar
Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101(1):272–284. https://doi.org/10.1002/jbm.a.34326
PubMed
CAS
Article
Google Scholar
Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439. https://doi.org/10.1016/j.carbpol.2014.05.092
PubMed
CAS
Article
Google Scholar
Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromol 17(7):2311–2320. https://doi.org/10.1021/acs.biomac.6b00668
CAS
Article
Google Scholar
Nechyporchuk O, Yu J, Nierstrasz VA, Bordes R (2017) Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing. ACS Sustain Chem Eng 5(6):4793–4801. https://doi.org/10.1021/acssuschemeng.7b00200
CAS
Article
Google Scholar
Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M (2017) Cartilage tissue engineering by the 3d bioprinting of ips cells in a nanocellulose/alginate bioink. Sci Rep 7:658
Article
Google Scholar
Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041
CAS
Article
Google Scholar
Oropallo W, Piegl LA (2015) Ten challenges in 3d printing. Eng Comput-Ger 32(1):135–148. https://doi.org/10.1007/s00366-015-0407-0
Article
Google Scholar
Oskui SM, Diamante G, Liao C, Shi W, Gan J, Schlenk D, Grover WH (2015) Assessing and reducing the toxicity of 3d-printed parts. Environ Sci Technol Lett 3(1):1–6. https://doi.org/10.1021/acs.estlett.5b00249
CAS
Article
Google Scholar
Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3d bioplotting of embryonic stem cells. Biofabrication 8(3):035020. https://doi.org/10.1088/1758-5090/8/3/035020
PubMed
CAS
Article
Google Scholar
Pakkanen J, Manfredi D, Minetola P, Iuliano L (2017) About the use of recycled or biodegradable filaments for sustainability of 3d printing. In: International conference on sustainable design and manufacturing. Springer, pp 776–785
Palaganas NB, Mangadlao JD, de Leon ACC, Palaganas JO, Pangilinan KD, Lee YJ, Advincula RC (2017) 3d printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl Mater Interfaces 9(39):34314–34324. https://doi.org/10.1021/acsami.7b09223
PubMed
CAS
Article
Google Scholar
Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182(Supplement C):36–53. https://doi.org/10.1016/j.compstruct.2017.08.088
Article
Google Scholar
Park JS, Kim T, Kim WS (2017) Conductive cellulose composites with low percolation threshold for 3d printed electronics. Sci Rep 7:3246. https://doi.org/10.1038/s41598-017-03365-w
PubMed
PubMed Central
CAS
Article
Google Scholar
Pattinson SW, Hart AJ (2017) Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Adv Mater Technol 2(4):1600084. https://doi.org/10.1002/admt.201600084
CAS
Article
Google Scholar
Paxton N, Smolan W, Bock T, Melchels F, Groll J, Jungst T (2017) Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 9(4):044107. https://doi.org/10.1088/1758-5090/aa8dd8
PubMed
Article
Google Scholar
Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja J (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20(3):1413–1424. https://doi.org/10.1007/s10570-013-9883-9
CAS
Article
Google Scholar
Piras CC, Fernandez-Prieto S, De Borggraeve WM (2017) Nanocellulosic materials as bioinks for 3d bioprinting. Biomater Sci 5(10):1988–1992. https://doi.org/10.1039/c7bm00510e
PubMed
CAS
Article
Google Scholar
Pitt K, Lopez-Botello O, Lafferty AD, Todd I, Mumtaz K (2017) Investigation into the material properties of wooden composite structures with in situ fibre reinforcement using additive manufacturing. Compos Sci Technol 138(Supplement C):32–39. https://doi.org/10.1016/j.compscitech.2016.11.008
CAS
Article
Google Scholar
Puisto A, Illa X, Mohtaschemi M, Alava M (2012) Modeling the rheology of nanocellulose suspensions. Nord Pulp Pap Res J 27(2):277–281. https://doi.org/10.3183/NPPRJ-2012-27-02-p277-281
CAS
Article
Google Scholar
Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE, Thomas DW (2015) 3d bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2015:925757. https://doi.org/10.1155/2015/925757
PubMed
PubMed Central
CAS
Article
Google Scholar
Rejeski D, Zhao F, Huang Y (2018) Research needs and recommendations on environmental implications of additive manufacturing. Addit Manuf 19:21–28. https://doi.org/10.1016/j.addma.2017.10.019
Article
Google Scholar
Ribeiro A, Blokzijl MM, Levato R, Visser CW, Castilho M, Hennink WE, Vermonden T, Malda J (2017) Assessing bioink shape fidelity to aid material development in 3d bioprinting. Biofabrication 10(1):014102. https://doi.org/10.1088/1758-5090/aa90e2
PubMed
CAS
Article
Google Scholar
Rigotti D, Nguyen VDH, Cataldi A, Pegoretti A (2017) Polyvinyl alcohol reinforced crystalline nanocellulose in 3d printing application. In: The 21st International conference on composites materials. Xi’an, China, pp 1–8
Rosenthal M, Henneberger C, Gutkes A, Bues C-T (2017) Liquid deposition modeling: a promising approach for 3d printing of wood. Eur J Wood Wood Prod 76(2):797–799. https://doi.org/10.1007/s00107-017-1274-8
CAS
Article
Google Scholar
Rymansaib Z (2016) Printing materials and processes for electrochemical applications. University of Bath
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491. https://doi.org/10.1021/bm0703970
CAS
Article
Google Scholar
Salmoria GV, Klauss P, Paggi RA, Kanis LA, Lago A (2009) Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym Test 28(6):648–652. https://doi.org/10.1016/j.polymertesting.2009.05.008
CAS
Article
Google Scholar
Schutz K, Placht AM, Paul B, Bruggemeier S, Gelinsky M, Lode A (2017) Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. J Tissue Eng Regen Med 11(5):1574–1587. https://doi.org/10.1002/term.2058
PubMed
CAS
Article
Google Scholar
Shafeiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751. https://doi.org/10.1007/s00397-013-0722-6
CAS
Article
Google Scholar
Shao Y, Chaussy D, Grosseau P, Beneventi D (2015) Use of microfibrillated cellulose/lignosulfonate blends as carbon precursors: impact of hydrogel rheology on 3d printing. Ind Eng Chem Res 54(43):10575–10582. https://doi.org/10.1021/acs.iecr.5b02763
CAS
Article
Google Scholar
Shatkin JA, Wegner TH, Bilek ET, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products-part 1: applications. Tappi J 13(5):9–16
CAS
Google Scholar
Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75. https://doi.org/10.1039/c5gc02396c
Article
Google Scholar
Shin S, Hyun J (2017) Matrix-assisted three-dimensional printing of cellulose nanofibers for paper microfluidics. ACS Appl Mater Interfaces 9(31):26438–26446. https://doi.org/10.1021/acsami.7b07609
PubMed
CAS
Article
Google Scholar
Shin D-G, Kim T-H, Kim D-E (2017) Review of 4d printing materials and their properties. Int J Precis Eng Manuf-Green Technol 4(3):349–357. https://doi.org/10.1007/s40684-017-0040-z
Article
Google Scholar
Siqueira G, Kokkinis D, Libanori R, Hausmann MK, Gladman AS, Neels A, Tingaut P, Zimmermann T, Lewis JA, Studart AR (2017) Cellulose nanocrystal inks for 3d printing of textured cellular architectures. Adv Funct Mater 27(12):1604619. https://doi.org/10.1002/adfm.201604619
CAS
Article
Google Scholar
Studart AR (2016) Additive manufacturing of biologically-inspired materials. Chem Soc Rev 45(2):359–376. https://doi.org/10.1039/c5cs00836k
PubMed
CAS
Article
Google Scholar
Sultan S, Siqueira G, Zimmermann T, Mathew AP (2017) 3d printing of nano-cellulosic biomaterials for medical applications. Curr Opin Biomed Eng 2(Supplement C):29–34. https://doi.org/10.1016/j.cobme.2017.06.002
Article
Google Scholar
Tang A, Liu Y, Wang Q, Chen R, Liu W, Fang Z, Wang L (2016) A new photoelectric ink based on nanocellulose/cds quantum dots for screen-printing. Carbohydr Polym 148:29–35. https://doi.org/10.1016/j.carbpol.2016.04.034
PubMed
CAS
Article
Google Scholar
Tao Y, Wang H, Li Z, Li P, Shi SQ (2017) Development and application of wood flour-filled polylactic acid composite filament for 3d printing. Materials 10(4):339. https://doi.org/10.3390/ma10040339
PubMed Central
CAS
Article
Google Scholar
Tenhunen T-M, Moslemian O, Kammiovirta K, Harlin A, Kääriäinen P, Österberg M, Tammelin T, Orelma H (2018) Surface tailoring and design-driven prototyping of fabrics with 3d-printing: an all-cellulose approach. Mater Des 140:409–419. https://doi.org/10.1016/j.matdes.2017.12.012
CAS
Article
Google Scholar
Torres-Rendon JG, Köpf M, Gehlen D, Blaeser A, Fischer H, Laporte LD, Walther A (2016) Cellulose nanofibril hydrogel tubes as sacrificial templates for freestanding tubular cell constructs. Biomacromol 17(3):905–913. https://doi.org/10.1021/acs.biomac.5b01593
CAS
Article
Google Scholar
Tran TN, Bayer IS, Heredia-Guerrero JA, Frugone M, Lagomarsino M, Maggio F, Athanassiou A (2017) Cocoa shell waste biofilaments for 3d printing applications. Macromol Mater Eng 302(11):1700219. https://doi.org/10.1002/mame.201700219
CAS
Article
Google Scholar
Ursan ID, Chiu L, Pierce A (2013) Three-dimensional drug printing: a structured review. J Am Pharm Assoc 53(2):136–144. https://doi.org/10.1331/JAPhA.2013.12217
Article
Google Scholar
Wang Q, Zhu J (2015) Facile preparation of nanofiller-paper using mixed office paper without deinking. Tappi J 14(3):167–174
CAS
Google Scholar
Wang Q, Zhu J (2016) Effects of mechanical fibrillation time by disk grinding on the properties of cellulose nanofibrils. Tappi J 15(6):419–423
CAS
Google Scholar
Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643. https://doi.org/10.1007/s10570-012-9745-x
CAS
Article
Google Scholar
Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012b) Approaching zero cellulose loss in cellulose nanocrystal (cnc) production: recovery and characterization of cellulosic solid residues (csr) and cnc. Cellulose 19(6):2033–2047. https://doi.org/10.1007/s10570-012-9765-6
CAS
Article
Google Scholar
Wang QQ, Zhu JY, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5(7):2527–2534. https://doi.org/10.1021/am302967m
PubMed
CAS
Article
Google Scholar
Wang Q, Zhao X, Zhu JY (2014a) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (cncs). Ind Eng Chem Res 53(27):11007–11014. https://doi.org/10.1021/ie501672m
CAS
Article
Google Scholar
Wang Q, Zhu Q, Xu J, Sun J (2014b) Combined mechanical destruction and alkaline pretreatment of wheat straw for enhanced enzymatic saccharification. BioResources 9(4):6841–6850. https://doi.org/10.15376/biores.9.4.6841-6850
Article
Google Scholar
Wang Q, Wei W, Chang F, Sun J, Xie S, Zhu Q (2016) Controlling the size and film strength of individualized cellulose nanofibrils prepared by combined enzymatic pretreatment and high pressure microfluidization. BioResources 11(1):2536–2547. https://doi.org/10.15376/biores.11.1.2536-2547
Article
CAS
Google Scholar
Wang R, Chen L, Zhu J, Yang R (2017a) Tailored and integrated production of carboxylated cellulose nanocrystals (cnc) with nanofibrils (cnf) through maleic acid hydrolysis. ChemNanoMat 3(5):328–335. https://doi.org/10.1002/cnma.201700015
CAS
Article
Google Scholar
Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017b) 3d printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
CAS
Article
Google Scholar
Wang Z, Xu J, Lu Y, Hu L, Fan Y, Ma J, Zhou X (2017c) Preparation of 3d printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high mnc constitution. Ind Crop Prod 109(Supplement C):889–896. https://doi.org/10.1016/j.indcrop.2017.09.061
CAS
Article
Google Scholar
Wang J, Chiappone A, Roppolo I, Shao F, Fantino E, Lorusso M, Rentsch D, Dietliker K, Pirri CF, Grutzmacher H (2018) All-in-one cellulose nanocrystals for 3d printing of nanocomposite hydrogels. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201710951
Article
PubMed
PubMed Central
Google Scholar
Wimpenny DI, Bryden B, Pashby IR (2003) Rapid laminated tooling. J Mater Process Technol 138(1–3):214–218. https://doi.org/10.1016/s0924-0136(03)00074-8
Article
Google Scholar
Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem 125(10):2997–3001. https://doi.org/10.1002/anie.201209676
CAS
Article
Google Scholar
Wu Y, Lin ZY, Wenger AC, Tam KC, Tang X (2018) 3d bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting 9:1–6. https://doi.org/10.1016/j.bprint.2017.12.001
Article
Google Scholar
Xu H-N, Tang Y-Y, Ouyang X-K (2017) Shear-induced breakup of cellulose nanocrystal aggregates. Langmuir 33(1):235–242. https://doi.org/10.1021/acs.langmuir.6b03807
PubMed
CAS
Article
Google Scholar
Yang G, Li X, He Y, Ma J, Ni G, Zhou S (2018) From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci 81:80–113. https://doi.org/10.1016/j.progpolymsci.2017.12.003
CAS
Article
Google Scholar
Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL (2009) Novel drug delivery devices for providing linear release profiles fabricated by 3dp. Int J Pharm 370(1–2):160–166. https://doi.org/10.1016/j.ijpharm.2008.12.008
PubMed
CAS
Article
Google Scholar
Zander NE, Dong H, Steele J, Grant JT (2014) Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl Mater Interfaces 6(21):18502–18510. https://doi.org/10.1021/am506007z
PubMed
CAS
Article
Google Scholar
Zhang F, Wei M, Viswanathan VV, Swart B, Shao Y, Wu G, Zhou C (2017) 3d printing technologies for electrochemical energy storage. Nano Energy 40:418–431. https://doi.org/10.1016/j.nanoen.2017.08.037
CAS
Article
Google Scholar
Zhao Y, Li Y, Mao S, Sun W, Yao R (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3d cell printing technology. Biofabrication 7(4):045002. https://doi.org/10.1088/1758-5090/7/4/045002
PubMed
Article
Google Scholar
Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225
PubMed
CAS
Article
Google Scholar