Effect of hydrothermal treatment of microfibrillated cellulose on rheological properties and formation of hydrolysis products

Abstract

The aim of this study was to determine the effects of hydrothermal treatment of microfibrillated cellulose (MFC) on its gel stability, water retention and rheological behavior. MFC gel was prepared by fibrillating endoglucanase pre-treated, never-dried dissolving pulp. The MFC gel samples were then exposed in a static chamber for different times at different temperatures. At temperatures of 120–150 °C, the viscosity profile of the gels was not significantly changed and a characteristic series of 3 successive regimes in the course of increasing shear rate, showing different behavior was revealed. The amount of water released by the samples under pressure, on the other hand, was notably increased after hydrothermal treatment. After further exposure to prolonged treatment times (24 h) and higher temperature (180 °C), a significant decrease in viscosity and shear modulus was observed. Analysis of filtrates revealed the formation of cello-oligosaccharides, glucose and HMF and a decrease in surface tension indicating peeling and molecular degradation of the sample matrice. The microfibralled cellulose sample decomposition and gel network structure breakdown on a molecular level is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686. https://doi.org/10.1016/j.carbpol.2009.11.045

    Article  CAS  Google Scholar 

  2. Álvarez E, Vázquez G, Sánchez-Vilas M, Sanjurjo B, Navaza JM (1997) Surface tension of organic acids + water binary mixtures from 20 °C to 50 °C. J Chem Eng Data 42(5):957–960. https://doi.org/10.1021/je970025m

    Article  Google Scholar 

  3. Atalla RH, Ellis JD, Schroeder LR (1984) Some effects of elevated temperatures on the structure of cellulose and its transformation. J Wood Chem Technol 4(4):465–482. https://doi.org/10.1080/02773818408070662

    Article  CAS  Google Scholar 

  4. Borrega M, Sixta H (2013) Purification of cellulosic pulp by hot water extraction. Cellulose 20(6):2803–2812. https://doi.org/10.1007/s10570-013-0086-1

    Article  CAS  Google Scholar 

  5. Davidson GF (1943) The rate of change in the properties of cotton cellulose under the prolonged action of acids. J Text Inst Trans 34(10):87–96. https://doi.org/10.1080/19447024308659271

    Article  Google Scholar 

  6. Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30. https://doi.org/10.1007/s10570-009-9372-3

    Article  CAS  Google Scholar 

  7. Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338. https://doi.org/10.1021/la201947x

    Article  CAS  PubMed  Google Scholar 

  8. Gehlen MH (2010) Kinetics of autocatalytic acid hydrolysis of cellulose with crystalline and amorphous fractions. Cellulose 17(2):245–252. https://doi.org/10.1007/s10570-009-9385-y

    Article  CAS  Google Scholar 

  9. Grignon J, Scallan AM (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25(12):2829–2843. https://doi.org/10.1002/app.1980.070251215

    Article  CAS  Google Scholar 

  10. Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12(2):177–183. https://doi.org/10.1007/s10570-004-1038-6

    Article  CAS  Google Scholar 

  11. Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121. https://doi.org/10.1016/j.carbpol.2016.09.077

    Article  CAS  PubMed  Google Scholar 

  12. Helmerius J, Vinblad von Walter J, Rova U, Berglund KA, Hodge DB (2010) Impact of hemicellulose pre-extraction for bioconversion on birch kraft pulp properties. Bioresour Technol 101:5996–6005. https://doi.org/10.1016/j.biortech.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  13. Hiltunen S, Sirén H, Heiskanen I, Backfolk K (2016) Capillary electrophoretic profiling of wood-based oligosaccharides. Cellulose 23(5):3331–3340. https://doi.org/10.1007/s10570-016-1011-1

    Article  CAS  Google Scholar 

  14. Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145. https://doi.org/10.1007/s10924-010-0248-2

    Article  CAS  Google Scholar 

  15. Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated tempo-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16(2):227–238. https://doi.org/10.1007/s10570-008-9269-6

    Article  CAS  Google Scholar 

  16. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819. https://doi.org/10.1007/s10570-012-9766-5

    Article  CAS  Google Scholar 

  17. Lahtinen P, Liukkonen S, Pere J, Sneck A, Kangas H (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9:2115–2127

    Article  CAS  Google Scholar 

  18. Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocolloids 15(1):25–32. https://doi.org/10.1016/S0268-005X(00)00046-1

    Article  CAS  Google Scholar 

  19. Maloney TC (2015) Network swelling of TEMPO-oxidized nanocellulose. Holzforschung 69(2):207–213

    Article  CAS  Google Scholar 

  20. Naderi A, Lindström T (2016) A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nordic Pulp Paper Res J 31(3):354–363

    Article  CAS  Google Scholar 

  21. Naderi A, Lindström T, Erlandsson J, Sundström J, Flodberg G (2016) A comparative study of the properties of three nano-fibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nordic Pulp Paper Res J 31(3):364–371

    Article  CAS  Google Scholar 

  22. Nguyen H, Nikolakis V, Vlachos DG (2016) Mechanistic insights into Lewis acid metal salt-catalyzed glucose chemistry in aqueous solution. ACS Catal 6(3):1497–1504. https://doi.org/10.1021/acscatal.5b02698

    Article  CAS  Google Scholar 

  23. Notley SM (2008) Effect of introduced charge in cellulose gels on surface interactions and the adsorption of highly charged cationic polyelectrolytes. Phys Chem Chem Phys 10:1819–1825. https://doi.org/10.1039/B718543J

    Article  CAS  PubMed  Google Scholar 

  24. Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic acid formation during hydrothermal, acidic and alkaline degradation of d-xylose. Monatshefte für Chemie Chem Mon 123(6):547–556. https://doi.org/10.1007/BF00816848

    Article  CAS  Google Scholar 

  25. Olszewska A, Eronen P, Johansson LS, Malho JM, Ankerfors M, Lindström T, Ruokolainen J, Laine J, Österberg M (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18(5):1213–1226. https://doi.org/10.1007/s10570-011-9577-0

    Article  CAS  Google Scholar 

  26. Örså F, Holmbom B, Thornton J (1997) Dissolution and dispersion of spruce wood components into hot water. Wood Sci Technol 31(4):279–290. https://doi.org/10.1007/BF00702615

    Article  Google Scholar 

  27. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. https://doi.org/10.1021/bm061215p

    Article  CAS  PubMed  Google Scholar 

  28. Pääkkönen T, Dimic-Misic K, Orelma H, Pönni R, Vuorinen T, Maloney T (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23(1):277–293. https://doi.org/10.1007/s10570-015-0824-7

    Article  CAS  Google Scholar 

  29. Palme A, Theliander H, Brelid H (2016) Acid hydrolysis of cellulosic fibres: comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydr Polym 136:1281–1287. https://doi.org/10.1016/j.carbpol.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  30. Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272. https://doi.org/10.3390/molecules15085258

    Article  CAS  PubMed  Google Scholar 

  31. Potvin J, Sorlien E, Hegner J, DeBoef B, Lucht BL (2011) Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis. Tetrahedron Lett 52(44):5891–5893. https://doi.org/10.1016/j.tetlet.2011.09.013

    Article  CAS  Google Scholar 

  32. Quiévy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95(3):306–314. https://doi.org/10.1016/j.polymdegradstab.2009.11.020

    Article  CAS  Google Scholar 

  33. Rovio S, Simolin H, Koljonen K, Sirén H (2008) Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. J Chromatogr A 1185(1):139–144. https://doi.org/10.1016/j.chroma.2008.01.031

    Article  CAS  PubMed  Google Scholar 

  34. Sattler C, Labbé N, Harper D, Elder T, Rials T (2008) Effects of hot water extraction on physical and chemical characteristics of oriented strand board (OSB) wood flakes. Clean Soil Air Water 36(8):674–681. https://doi.org/10.1002/clen.200800051

    Article  CAS  Google Scholar 

  35. Shafiei-Sabet S, Martinez M, Olson J (2016) Shear rheology of micro-fibrillar cellulose aqueous suspensions. Cellulose 23(5):2943–2953. https://doi.org/10.1007/s10570-016-1040-9

    Article  CAS  Google Scholar 

  36. Shatkin JA, Wegner TH, Bilek E, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products—part 1: applications. Tappi J 13(5):9–16

    CAS  Google Scholar 

  37. Silveira RL, Stoyanov SR, Kovalenko A, Skaf MS (2016) Cellulose aggregation under hydrothermal pretreatment conditions. Biomacromolecules 17(8):2582–2590. https://doi.org/10.1021/acs.biomac.6b00603

    Article  CAS  PubMed  Google Scholar 

  38. Song T, Pranovich A, Holmbom B (2012) Hot-water extraction of ground spruce wood of different particle size. BioResources 7(3):4214–4225

    Google Scholar 

  39. Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238. https://doi.org/10.1007/s10570-016-0866-5

    Article  CAS  Google Scholar 

  40. Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131. https://doi.org/10.1021/acs.biomac.5b00539

    Article  CAS  PubMed  Google Scholar 

  41. Tenhunen TM, Peresin MS, Penttilä PA, Pere J, Serimaa R, Tammelin T (2014) Significance of xylan on the stability and water interactions of cellulosic nanofibrils. React Funct Polym 85:157–166

    Article  CAS  Google Scholar 

  42. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. https://doi.org/10.1021/bm901186u

    Article  CAS  PubMed  Google Scholar 

  43. Vesterinen AH, Myllytie P, Laine J, Seppälä J (2010) The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet. J Appl Polym Sci 116(5):2990–2997. https://doi.org/10.1002/app.31832

    CAS  Article  Google Scholar 

  44. Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from norway spruce wood and thermomechanical pulp. Carbohydr Polym 52(2):175–187. https://doi.org/10.1016/S0144-8617(02)00288-6

    Article  Google Scholar 

Download references

Acknowledgments

Johanna Lyytikäinen (M.Sc) is thanked for measuring the surface tension of the filtrates. Anthony Bristow (Dr.) is thanked for linguistic revision of the manuscript. Stora Enso Oyj is thanked for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salla Hiltunen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiltunen, S., Heiskanen, I. & Backfolk, K. Effect of hydrothermal treatment of microfibrillated cellulose on rheological properties and formation of hydrolysis products. Cellulose 25, 4653–4662 (2018). https://doi.org/10.1007/s10570-018-1884-2

Download citation

Keywords

  • Microfibrillated cellulose
  • Nanocellulose
  • Hydrothermal treatment
  • Filtrate
  • Rheology