Advertisement

Cellulose

, Volume 25, Issue 7, pp 4145–4154 | Cite as

High strength cellulose/ATT composite films with good oxygen barrier property for sustainable packaging applications

Original Paper
  • 20 Downloads

Abstract

High strength regenerated cellulose/attapulgite (ATT) composite films (RC/ATT) with good oxygen barrier performance were prepared from cellulose/LiOH/urea solutions with different ATT contents ranging from 5 to 20 wt%. The synthesized RC/ATT films were characterized using UV–vis, XRD, scanning electron microscopy, TGA and mechanical testing. The results revealed the homogeneous distribution of ATT in the cellulose matrix. The tensile strength and Young’s modulus of the RC film were significantly improved from 86.9 MPa and 4.3 GPa to reach 127 MPa and 5 GPa as a result of the 5 wt% ATT reinforcement, respectively. The incorporation of ATT into the cellulose matrix could improve the thermal stability and water resistance of the RC film. Besides, the RC/ATT composite films exhibited relative low oxygen permeability below 0.5 cm3 μm/day m2 kPa, which could even reach 0.32 cm3 μm/day m2 kPa with 20 wt% ATT content. This work not only provided novel RC/ATT films as potential sustainable barrier packaging materials, but also shed light on the fabrication of other biopolymers based barrier packaging materials.

Keywords

Composite film Cellulose Attapulgite Oxygen barrier properties Packaging 

Notes

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 51503177, 21774107 and 51603179), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (Grant No. PPZY2015A025), and Initial Scientific Research Foundation of Yancheng Institute of Technology (Grant No. KJC2014001) for financial support of this research.

References

  1. Alcantara A, Darder M, Aranda P, Ruiz-Hitzky E (2014) Polysaccharide–fibrous clay bionanocomposites. Appl Clay Sci 96:2–8CrossRefGoogle Scholar
  2. Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  3. Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628CrossRefGoogle Scholar
  4. Bardet R, Reverdy C, Belgacem N, Leirset I, Syverud K, Bardet M, Bras J (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241CrossRefGoogle Scholar
  5. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRefGoogle Scholar
  6. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromol 7:183–189CrossRefGoogle Scholar
  7. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRefGoogle Scholar
  8. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperature. Macromolecules 41:9345–9351CrossRefGoogle Scholar
  9. Chanzy H, Dube M (1979) Crystallization of cellulose with N-methylmorpholine N-oxide: a new method of texturing cellulose. J Polym Sci Polym Lett Ed 17:219–226CrossRefGoogle Scholar
  10. Chen G, Fu G, Wang X, Gong X, Niu Y, Peng F, Yao C, Sun R (2017) Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance. Sci Rep 7:41075CrossRefGoogle Scholar
  11. Duan J, He X, Zhang L (2014) Magnetic cellulose–TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun 51:338–341CrossRefGoogle Scholar
  12. Eckelt J, Wolf B (2005) Membranes directly prepared from solutions of unsubstituted cellulose. Macromol Chem Phys 206:227–232CrossRefGoogle Scholar
  13. Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  14. French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  15. He M, Kwok R, Wang Z, Duan B, Tang B, Zhang L (2014) Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic–hydrophilic interface interaction. ACS Appl Mater Inter 6:9508–9516CrossRefGoogle Scholar
  16. He M, Duan B, Xu D, Zhang L (2015) Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose 22:553–563CrossRefGoogle Scholar
  17. Heinze T, Dicke R, Koschella A, Kull A, Klohr E, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631CrossRefGoogle Scholar
  18. Hubbe M, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas O (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233Google Scholar
  19. Khalil H, Davoudpour Y, Saurabh C, Hossain M, Adnan A, Dungani R, Paridah M, Sarker M, Fazita M, Syakir M, Haafiz M (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sust Energ Rev 64:823–836CrossRefGoogle Scholar
  20. Khalil H, Saurabh C, Tye Y, Lai T, Easa A, Rosamah E, Fazita M, Syakir M, Adnan A, Fizree H, Aprilia N, Banerjee A (2017) Seaweed based sustainable films and composites for food and pharmaceutical applications: a review. Renew Sust Energ Rev 77:353–362CrossRefGoogle Scholar
  21. Lavoine N, Desloses I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764CrossRefGoogle Scholar
  22. Liang W, Wang Y, Sun H, Chen P, Zhu Z, Li A (2015) Superhydrophobic attapulgite-based films for the selective separation of oils and organic solvents from water. RSC Adv 5:105319–105323CrossRefGoogle Scholar
  23. Liao L, Li X, Wang Y, Fu H, Li Y (2016) Effects of surface structure and morphology of nanoclays on the properties of jatropha curcas oil-based waterborne polyurethane/clay nanocomposites. Ind Eng Chem Res 55:11689–11699CrossRefGoogle Scholar
  24. Liu A, Walther A, Ikkala O, Belova L, Berglund L (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromol 12:633–641CrossRefGoogle Scholar
  25. Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH-Thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366CrossRefGoogle Scholar
  26. Mahmoudian S, Wahit M, Ismail A, Yussuf A (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohyd Polym 88:1251–1257CrossRefGoogle Scholar
  27. Miller K, Krochta J (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Tech 8:228–237CrossRefGoogle Scholar
  28. Moon R, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  29. Ostlund A, Lundberg D, Nordstierna L, Holmberg K, Nyden M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407CrossRefGoogle Scholar
  30. Peng L, Zhou L, Li Y, Pan F, Zhang S (2011) Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Compos Sci Technol 71:1280–1285CrossRefGoogle Scholar
  31. Pinkert A, Marsh K, Pang S, Staiger M (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRefGoogle Scholar
  32. Rhim J, Park H, Ha C (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652CrossRefGoogle Scholar
  33. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  34. Soheilmoghaddam M, Wahit M (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Int J Biol Macromol 58:133–139CrossRefGoogle Scholar
  35. Soheilmoghaddam M, Wahit M, Whye W, Akos N, Pour R, Yussuf A (2014) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohyd Polym 106:326–334CrossRefGoogle Scholar
  36. Song H, Zheng L (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 20:1737–1746CrossRefGoogle Scholar
  37. Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohyd Polym 82:83–91CrossRefGoogle Scholar
  38. Wang C, Wang Y, Liu W, Yin H, Yuan Z, Wang Q, Xie H, Cheng R (2012a) Natural fibrous nanoclay reinforced soy polyol-based polyurethane. Mater Lett 78:85–87CrossRefGoogle Scholar
  39. Wang H, Gurau G, Rogers R (2012b) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRefGoogle Scholar
  40. Wang C, Ding L, Wu Q, Liu F, Wei J, Lu R, Xie H, Cheng R (2014a) Soy polyol-based polyurethane modified by raw and silylated palygorskite. Ind Crop Prod 57:29–34CrossRefGoogle Scholar
  41. Wang C, Wu Q, Liu F, An J, Lu R, Xie H, Cheng R (2014b) Synthesis and characterization of soy polyol-based polyurethane nanocomposites reinforced with silylated palygorskite. Appl Clay Sci 101:246–252CrossRefGoogle Scholar
  42. Wang Q, Guo J, Xu D, Cai J, Qiu Y, Ren J, Zhang L (2015) Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties. Cellulose 22:3799–3810CrossRefGoogle Scholar
  43. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRefGoogle Scholar
  44. Wu C, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRefGoogle Scholar
  45. Xu B, Huang W, Pei Y, Chen Z, Kraft A, Reuben R, Hosson J, Fu Y (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polym J 45:1904–1911CrossRefGoogle Scholar
  46. Xu D, Cai J, Zhang L (2016) High strength cellulose composite films reinforced with clay for applications as antibacterial materials. Chin J Polym Sci 34:1281–1289CrossRefGoogle Scholar
  47. Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromol 12:2766–2771CrossRefGoogle Scholar
  48. Yang Q, Saito T, Isogai A (2012) Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19:1913–1921CrossRefGoogle Scholar
  49. Yang Q, Wu C, Saito T, Isogai A (2014) Cellulose–clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution. Carbohyd Polym 100:179–184CrossRefGoogle Scholar
  50. Youssef A, EL-Sayed S, Salama H, El-Sayed H, Dufresne A (2015) Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohyd Polym 132:274–285CrossRefGoogle Scholar
  51. Zhang J, Zhang J (2010) Advanced functional materials based on cellulose. Acta Polym Sin 12:1376–1398CrossRefGoogle Scholar
  52. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRefGoogle Scholar
  53. Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N, N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514CrossRefGoogle Scholar
  54. Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290CrossRefGoogle Scholar
  55. Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYancheng Institute of TechnologyYanchengChina

Personalised recommendations