Advertisement

Cellulose

, Volume 25, Issue 7, pp 4079–4091 | Cite as

Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors

  • Yang Bo
  • Yaping Zhao
  • Zaisheng Cai
  • Addie Bahi
  • Caihong Liu
  • Frank Ko
Original Paper
  • 428 Downloads

Abstract

Flexible electrodes made of cotton textile, polypyrrole (PPy) and multi-walled carbon nanotubes (MWCNT) composites were synthesized via a facile in situ chemical deposition method. This method involves a series of successive steps by immersing the cotton fabric in various MWCNT suspensions; adding monomers and p-toluene sulfonic acid (TsOH) as dopant under ultrasonic condition; and then initiating the polymerization by drop-in the oxidant. The fabricated electrodes exhibited a specific capacitance of 597 F g−1 with good cycle stability (maintaining 96.8% after 1000 cycles). Symmetric all-solid-state supercapacitors based on cotton/PPy/MWCNT electrodes and poly(vinyl alcohol) (PVA)/H3PO4 gel electrolytes were fabricated and tested. The electrochemical measurements showed that assembled supercapacitors had a specific capacitance of 206.8 F g−1 at a current density of 1 mA cm−2. The supercapacitors were flexible enough to bend and twist with constant capacitance performance and exhibit 72% capacitance retention after 400 charge–discharge cycles.

Graphical Abstract

Keywords

Flexible electrodes Polypyrrole Cotton/PPy/MWCNT Chemical polymerazation Flexible supercapacitors 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51303022) and the Fundamental Research Funds for the Central Universities (2232015D3-17).

References

  1. Adu K, Ma D, Wang Y, Spencer M, Rajagopalan R, Wang CY, Randall C (2017) Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application. Nanotechnology 29:035606–035607Google Scholar
  2. Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252CrossRefPubMedGoogle Scholar
  3. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884CrossRefGoogle Scholar
  4. Biniak S, Dzieleńdziak B, Siedlewski J (1995) The electrochemical behaviour of carbon fibre electrodes in various electrolytes. Double-layer capacitance. Carbon 33:1255–1263CrossRefGoogle Scholar
  5. Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672CrossRefGoogle Scholar
  6. Cai J et al (2015) High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl Mater Interfaces 7:14946–14953CrossRefPubMedGoogle Scholar
  7. Firoz BK, Siva Subramanian SP, Anbu KM (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr Polym 94:487–495CrossRefGoogle Scholar
  8. Ford ENJ, Mendon SK, Thames SF, Ph D, Rawlins JW, Ph D (2010) X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fibers Fabr 5:10–20Google Scholar
  9. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387–404CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578CrossRefGoogle Scholar
  11. Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5:6423–6435CrossRefGoogle Scholar
  12. Hu L, Pasta M, Mantia FL, Cui LF, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRefPubMedGoogle Scholar
  13. Huang S, Chen P, Lin W, Lv S, Chen G, Yin X, Chen W (2016) Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. Rsc Adv 6:13359–13364CrossRefGoogle Scholar
  14. Jagadale AD, Guan G, Du X, Hao X, Li X, Abudula A (2015) Cobalt hydroxide [Co(OH)2] loaded carbon fiber flexible electrode for high performance supercapacitor. Rsc Adv 5:56942–56948CrossRefGoogle Scholar
  15. Kang ET, Neoh KG, Ong YK, Tan KL, Tan BTG (1991) X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative Fe(III) salts. Macromolecules 24:2822–2828CrossRefGoogle Scholar
  16. Karim MR, Lee CJ, Chowdhury AMS, Nahar N, Mu SL (2007) Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett 61:1688–1692CrossRefGoogle Scholar
  17. Kim JY, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396–402CrossRefGoogle Scholar
  18. Lee SY, Kim JI, Park SJ (2014) Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 78:298–303CrossRefGoogle Scholar
  19. Li L, Seng KH, Liu H, Nevirkovets IP, Guo Z (2013a) Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim Acta 87:801–808CrossRefGoogle Scholar
  20. Li S, Guo Z, Wang C, Wallace G, Liu H (2013b) Flexible cellulose based polypyrrole-multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. J Mater Chem A 1:14300–14305CrossRefGoogle Scholar
  21. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175CrossRefGoogle Scholar
  22. Li X, Zhou M, Wang J, Ge F, Zhao Y, Komarneni S, Cai Z (2017) Flexible and internal series-connected supercapacitors with high working voltage using ultralight porous carbon nanofilms. J Power Sources 342:762–771CrossRefGoogle Scholar
  23. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRefPubMedGoogle Scholar
  24. Liu WW, Yan XB, Lang JW, Peng C, Xue QJ (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253CrossRefGoogle Scholar
  25. Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26:4855–4862CrossRefPubMedGoogle Scholar
  26. Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2015) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRefGoogle Scholar
  27. Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRefGoogle Scholar
  28. Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultra-high-power performance. Electrochim Acta 56:10443–10449CrossRefGoogle Scholar
  29. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639CrossRefPubMedPubMedCentralGoogle Scholar
  30. Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, Xu J (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr Polym 157:344–352CrossRefPubMedGoogle Scholar
  31. Qian T, Yu C, Wu S, Shen J (2013) A facilely prepared polypyrrole–reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes. J Mater Chem A 1:6539–6542CrossRefGoogle Scholar
  32. Saravanakumar B, Jayaseelan SS, Seo MK, Kim HY, Kim BS (2017) NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications. Nanoscale 9:18819–18834CrossRefPubMedGoogle Scholar
  33. Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S, Limtrakul J (2013) High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60:109–116CrossRefGoogle Scholar
  34. Shi K, Zhitomirsky I (2013) Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl Mater Interfaces 5:13161–13170CrossRefPubMedGoogle Scholar
  35. Song Y, Li Z, Guo K, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale 8:15671–15680CrossRefPubMedGoogle Scholar
  36. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefPubMedGoogle Scholar
  37. Tamm J, Raudsepp T, Marandi M, Tamm T (2007) Electrochemical properties of the polypyrrole films doped with benzenesulfonate. Synth Met 157:66–73CrossRefGoogle Scholar
  38. Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G (2015) Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl Mater Interfaces 7:15303–15313CrossRefPubMedGoogle Scholar
  39. Wang PC, Yu JY (2012) Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. React Funct Polym 72:311–316CrossRefGoogle Scholar
  40. Wang YG, Cheng L, Xia YY (2006) Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. J Power Sources 153:191–196CrossRefGoogle Scholar
  41. Wang S, Pei B, Zhao X, Dryfe RAW (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2:530–536CrossRefGoogle Scholar
  42. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31CrossRefPubMedGoogle Scholar
  43. Xie B et al (2015) Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics. ACS Nano 9:5636–5645CrossRefPubMedGoogle Scholar
  44. Xiong Z, Liao C, Han W, Wang X (2015) Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater 27:4469–4475CrossRefPubMedGoogle Scholar
  45. Xu J et al (2015a) Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org Electron 26:292–299CrossRefGoogle Scholar
  46. Xu J et al (2015b) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159CrossRefGoogle Scholar
  47. Xu J et al (2015c) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363CrossRefGoogle Scholar
  48. Xue J et al (2013) An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys Chem Chem Phys 15:8042–8045CrossRefPubMedGoogle Scholar
  49. Yang P et al (2014) Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy 10:108–116CrossRefGoogle Scholar
  50. Yesi Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH (2016) Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. Chemsuschem 9:370–378CrossRefPubMedGoogle Scholar
  51. Zhang B et al (2011) A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6:431–440CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yang Bo
    • 1
  • Yaping Zhao
    • 1
    • 2
  • Zaisheng Cai
    • 2
  • Addie Bahi
    • 3
  • Caihong Liu
    • 1
  • Frank Ko
    • 3
  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Key Laboratory of Science and Technology of Eco-TextileDonghua University, Ministry of EducationShanghaiChina
  3. 3.Department of Materials EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations