, Volume 25, Issue 7, pp 4223–4238 | Cite as

Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal–organic framework

  • Lu Lu
  • Cuicui Hu
  • Yanjie Zhu
  • Huanhuan Zhang
  • Rong Li
  • Yanjun Xing
Original Paper


A multi-functional cotton fabric with UV resistance, antibacterial and superhydrophobic properties was achieved by immobilizing metal–organic framework ZnBDC on the fabric surface using zinc(II) acetate and 1,4-benzenedicarboxylic acid as raw materials. The immobilization of ZnBDC was performed via water-based layer-by-layer (LbL) deposition based on the concept of self-assemble. The ZnBDC on cotton surface was characterized by XRD, ATR-FTIR, SEM, UV–Vis spectra, TG and adsorption of Rhodamine B. The results indicated the ZnBDC was formed as a partially hydrolyzed phase of MOF-5 on the fabric surface during the LbL deposition. The porous structure of ZnBDC was kept after the deposition. The effect of deposition cycle, deposition temperature and time on the deposition of ZnBDC has been studied. The results showed that the ZnBDC deposited cotton fabric had an excellent anti-UV properties with UPF 50 +, T(UV-A) and T(UV-B) < 5%. The ZnBDC deposited cotton fabric exhibited an excellent antimicrobial effect on gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli. The treatment of sodium stearate further imparted the superhydrophobic property on the ZnBDC deposited cotton fabric with water contact angle > 150°.

Graphical Abstract


Metal organic frameworks Layer-by-layer deposition Cotton UV resistance Antibacterial Superhydrophobic 



This work was supported by the National Science and Technology Ministry (ID2012BAK30B03) and the Fundamental Research Funds for the Central Universities and the Central Universities (No. 2232013A3-05).

Supplementary material

10570_2018_1838_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 28 kb)


  1. Abbasi A, Akhbari K, Morsali A (2012) Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem 19(4):846–852. CrossRefPubMedGoogle Scholar
  2. Abdelhameed RM, Abdel-Gawad H, Elshahat M, Emam HE (2016) Cu-BTC@cotton composite: design and removal of ethion insecticide from water. RCS Adv 6(48):42324–42333. CrossRefGoogle Scholar
  3. Abdelhameed RM, Emam HE, Rocha E, Silva J (2017a) Cu-BTC metal–organic framework natural fabric composites for fuel purification. Fuel Process Technol 159:306–312. CrossRefGoogle Scholar
  4. Abdelhameed RM, Omhm K, Amr A, Rocha E, Ams S (2017b) Antimosquito activity of titanium-organic framework supported on fabrics. ACS Appl Mater Interface 9(27):22112–22120. CrossRefGoogle Scholar
  5. Andrea C, Ying Y, Scott S, Bromberg L, Rutledge G, Hatton T (2010) Growth of metal–organic framework on polymer surfaces. J Am Chem Soc 132(44):15687–15691. CrossRefGoogle Scholar
  6. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43(16):5594–5617. CrossRefPubMedGoogle Scholar
  7. Cheng YN, Xiao LW, Li HL, Ye Z (2015) Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Chem Res Toxicol 28(9):1815–1822. CrossRefGoogle Scholar
  8. Emam HE, Abdelhameed RM (2007) In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide). J Porous Mater 24:1175–1185. CrossRefGoogle Scholar
  9. Emam HE, Abdelhameed RM (2017) Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)-metal organic framework. ACS Appl Mater Interface 9(33):28034–28045. CrossRefGoogle Scholar
  10. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. CrossRefGoogle Scholar
  11. French AD, Cintron MS (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588. CrossRefGoogle Scholar
  12. Getachew N, Chebude Y, Diaz I, Sanchez-Sanche M (2014) Room temperature synthesis of metal organic framework MOF-2. J Porous Mater 21(5):769–773. CrossRefGoogle Scholar
  13. Haendel S, Rodriguez P, Ochoa-Puentes C, Sierra C, Soto C (2014) Antibacterial activity against Escherichia coil of Cu-BTC (MOF-199) metal–organic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131(19):40815–40820. CrossRefGoogle Scholar
  14. Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129(12):3612–3620. CrossRefPubMedGoogle Scholar
  15. Han JS, Morsali A (2014) Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”. Ultrason Sonochem 21(4):1424–1429. CrossRefGoogle Scholar
  16. Hermes S, Schröder F, Chelmowski R, Wöll C, Fischer RA (2005) Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au (111). J Am Chem Soc 127(40):13744–13745. CrossRefPubMedGoogle Scholar
  17. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed Engl 45(36):5974–5978. CrossRefPubMedGoogle Scholar
  18. Horcajada P, Serre C, Maurin G, Ramsahye N, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous metal–organic frameworks for a controlled drug delivery. J Am Chem Soc 130(21):6774–6780. CrossRefPubMedGoogle Scholar
  19. Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater 58(2):105–114. CrossRefGoogle Scholar
  20. Hwang YK, Hong DY, Chang JS, Jhung S, Seo Y, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed Engl 47(22):4144–4148. CrossRefPubMedGoogle Scholar
  21. Kaewprasit C, Hequet E, Abidi N, Gourlot JP (1998) Application of methylene blue adsorption to cotton fiber specific surface area measurement: Part I. Methodology. J Cotton Sci 2(4):164–173Google Scholar
  22. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177. CrossRefPubMedGoogle Scholar
  23. Lopez-Maya E, Montoro C, Rodriguez-Albelo L, Cervantes S, Lozano-Pérez A, Cenís J, Barea E, Navarro J (2015) Textile/metal–organic-framework composites as self-detoxifying filters for chemical-warfare agents. Angew Chem Int Ed Engl 54(23):6790–6794. CrossRefPubMedGoogle Scholar
  24. Lu A, McEntee M, Browe MA, Hall MG, DeCoste JB, Peterson GW (2017) MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl Mater Interfaces 9(15):13632–13636. CrossRefPubMedGoogle Scholar
  25. Makiura R, Kitagawa H (2010) Porous porphyrin nanoarchitectures on surfaces. Eur J Inorg Chem 24:3715–3724. CrossRefGoogle Scholar
  26. Makiura R, Moyoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H (2010) Surface nano-architecture of a metal–organic framework. Nat Mater 9(7):565–571. CrossRefPubMedGoogle Scholar
  27. Masoomi MY, Morsali A (2012) Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord Chem Rev 256(23–24):2921–2943. CrossRefGoogle Scholar
  28. Mcdonald R (1997) Color physics for industry, 2nd edn. Society of Dyers and Colorists, BradfordGoogle Scholar
  29. Mcinally A, Mather RR, Sing KSW (1991) The porosity of textile fibre surfaces. In: Reinoso R, Rouquerol J, Sing KSW (eds) Characterization of porous solids II. Elsevier, Amsterdam, pp 409–418. CrossRefGoogle Scholar
  30. Moon HR, Kim JH, Suh MP (2005) Redox-active porous metal–organic framework producing silver nanoparticles from AgI ions at room temperature. Angew Chem Int Ed Engl 117(8):1261–1265. CrossRefGoogle Scholar
  31. Motoyama S, Makiura R, Sakata O, Kitagawa H (2011) Highly crystalline nanofilm by layering of porphyrin metal–organic framework sheets. J Am Chem Soc 133(15):5640–5643. CrossRefPubMedGoogle Scholar
  32. Neufeld M, Harding J, Reynolds M (2015) Immobilization of metal–organic framework copper(II) benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Appl Mater Interface 7(48):26742–26750. CrossRefGoogle Scholar
  33. Okano T, Sarko A (1985) Mercerization of cellulose II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(2):325–332. CrossRefGoogle Scholar
  34. Ozer R, Hinestroza J (2015) One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. RSC Adv 5(20):15198–15204. CrossRefGoogle Scholar
  35. Pan CY, Shen L, Shang SM, Xing YJ (2012) Preparation of superhydrophobic and UV blocking cotton fabric via sol–gel method and self-assembly. Appl Surf Sci 259(2):110–117. CrossRefGoogle Scholar
  36. Pan Q, Zhi MS, De J, Wang X, Wu Z, Liu ZD (2013) Application of two reactive water-soluble antibacterials on polyester/cotton blend fabrics. Adv Mater Res 821–822:642–645. CrossRefGoogle Scholar
  37. Park E, Moon W, Song M, Kim M, Chung K, Yoon J (2001) Antibacterial activity of phenol and benzoic acid derivatives. Int Biodeter Biodegr 47(4):209–214. CrossRefGoogle Scholar
  38. Paul R (2014) Functional finishes for textiles: improving comfort, performance and protection. Woodhead Publishing, CambridgeGoogle Scholar
  39. Ren J, Rogers D, Segakweng T, Langmi HW, North BC, Mathe M, Bessarabov D (2014) Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5). Int J Mater Res 105(1):89–93. CrossRefGoogle Scholar
  40. Rodriguez NA, Parra R, Grela MA (2015) Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: implications on their excitation mechanism. RSC Adv 5(89):73112–73118. CrossRefGoogle Scholar
  41. Rowen JW, Blaine RL (1947) Sorption of nitrogen and water vapor on textile fibers. Ind Eng Chem 39:1659–1663CrossRefGoogle Scholar
  42. Sabo M, Henschel A, Frode H, Klemmb E, Kaskel S (2007) Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. J Mater Chem 17(36):3827–3832. CrossRefGoogle Scholar
  43. Saha D, Deng S, Yang Z (2009) Hydrogen adsorption on metal–organic framework (MOF-5) synthesized by DMF approach. J Porous Mater 16(2):141–149. CrossRefGoogle Scholar
  44. Wang Z, Wang J, Li M, Sun K (2014) Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal–organic frameworks for removal of methylene blue. Sci Rep 4:5939–5945. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wu CM, Rathi M, Ahrenkiel SP, Koodali RT, Wang Z (2013) Facile synthesis of MOF-5 confined in SBA-15 hybrid material with enhanced hydrostability. Chem Commun 49(12):1223–1225. CrossRefGoogle Scholar
  46. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714. CrossRefPubMedGoogle Scholar
  47. Yang C, Wang X, Omary MA (2007) Fluorous metal–organic frameworks for high-density gas adsorption. J Am Chem Soc 129(50):15454–15455. CrossRefPubMedGoogle Scholar
  48. Zhang L, Hu YH (2010) A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal–organic framework. J Phys Chem C 114(6):2566–2572. CrossRefGoogle Scholar
  49. Zhao J, Gong B, Nunn W, Lemaire P, Stevens E, Sidi F, Williams P, Oldham C, Walls H, Shepherd S, Browe M, Peterson G, Losego M, Parsons G (2015) Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J Mater Chem A 3(4):1458–1464. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Shanghai Institute of Quality Inspection and Technical ResearchShanghaiChina
  3. 3.National Engineering Research Center for Dyeing and FinishingShanghaiChina

Personalised recommendations