, Volume 25, Issue 7, pp 4261–4268 | Cite as

Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision

  • Lindong Zhai
  • Hyun Chan Kim
  • Jung Woong Kim
  • Jinmo Kang
  • Jaehwan Kim


An atomic force microscopy (AFM) three-points bending (TPB) test is very useful to measure the mechanical properties of cellulose nanofibers (CNFs). This study investigates the Young’s moduli of various CNFs by using AFM TPB test. CNFs were isolated from hardwood, softwood, bamboo and cotton by using an aqueous counter collision (ACC) method. Single CNF was transferred to the AFM calibration chip by using contact transfer for the AFM TPB test and the CNF was considered as a clamped-clamped beam. An Euler equation was used to calculate Young’s modulus under linear deformation assumption. The cross section of single CNF is assumed to be circular shape. Young’s moduli of hardwood, softwood, bamboo and cotton CNFs isolated by ACC method are in the range of 88–110 GPa, which are comparable with the previously reported values.


Cellulose nanofiber Three-points bending test Atomic force microscopy Young’s modulus Aqueous counter collision Micromechanics 



This research was supported by Creative Research Initiatives Program through the National Research Foundation of Korea (NRF-2015R1A3A2066301).


  1. Abe K, Iwanoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. CrossRefPubMedGoogle Scholar
  2. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. CrossRefPubMedGoogle Scholar
  3. Boldizar A, Klason C, Kubát J, Näslund P, Sáha P (2006) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater Polym Biomater 11:229–262. CrossRefGoogle Scholar
  4. Burnham NA, Colton RJ (1989) Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J Vac Sci Technol 7:2906–2913. CrossRefGoogle Scholar
  5. Chen X, Kuhn E, Wang W, Park S, Flanegan K, Trass O, Tenlep L, Tao L, Tucker M (2013) Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresour Technol 147:401–408. CrossRefPubMedGoogle Scholar
  6. Cheng Q, Wang S (2008) A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Compos Pt A-Appl Sci Manuf 39:1838–1843. CrossRefGoogle Scholar
  7. Cheng Q, Wang S, Harper DP (2009) Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy. Compos Pt A-Appl Sci Manuf 40:583–588. CrossRefGoogle Scholar
  8. Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207. CrossRefGoogle Scholar
  9. Gilberto S, Sandra TL, Julien B, Denilson SP, Alain D (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. CrossRefGoogle Scholar
  10. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646. CrossRefPubMedGoogle Scholar
  11. Heidelberg A, Ngo LT, Wu B, Phillips MA, Sharma S, Kamins TI, Sader JE, Boland JJ (2006) A generalized description of the elastic properties of nanowires. Nano Lett 6:1101–1106CrossRefPubMedGoogle Scholar
  12. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. CrossRefGoogle Scholar
  13. Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322. CrossRefPubMedGoogle Scholar
  14. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 1:71–85. CrossRefGoogle Scholar
  15. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576. CrossRefPubMedGoogle Scholar
  16. Kondo T, Morita M, Hayakawa K, Onda Y (2005) Wet pulverizing of polysaccharides. US patent US 7357339 B2Google Scholar
  17. Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290. CrossRefPubMedGoogle Scholar
  18. Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules 12:716–720. CrossRefPubMedGoogle Scholar
  19. Loo YL, Willett RL, Baldwin KW, Rogers JA (2002) Interfacial chemistries for nanoscale transfer printing. J Am Chem Soc 124:7654–7655. CrossRefPubMedGoogle Scholar
  20. Mimms A (1993) Kraft pulping: a compilation of notes. TAPPI Press, AtlantaGoogle Scholar
  21. Ni H, Li X, Gao H (2006) Elastic modulus of amorphous SiO2 nanowires. Appl Phys Lett 88:043108. CrossRefGoogle Scholar
  22. Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. CrossRefPubMedGoogle Scholar
  23. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660. CrossRefGoogle Scholar
  24. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A-Mater Sci Process 69:255–260. CrossRefGoogle Scholar
  25. Sundari MT, Ramesh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydr Polym 87:1701–1705. CrossRefGoogle Scholar
  26. Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Lett 84:1603–1605. CrossRefGoogle Scholar
  27. Tang B, Ngan AHW, Pethica JB (2008) A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy. Nanotechnology 19:495713. CrossRefPubMedGoogle Scholar
  28. Tang L, Huang B, Ou W, Chen X, Chen Y (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102:10973–10977. CrossRefPubMedGoogle Scholar
  29. Tsuboi K, Yokata S, Kondo T (2014) Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nordic Pulp Pap Res J 29:69–76CrossRefGoogle Scholar
  30. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529. CrossRefPubMedGoogle Scholar
  31. Xu W, Mulhern PJ, Blackford BL, Jericho MH, Templeton I (1994) A new atomic-force microscopy technique for the measurement of the elastic properties of biological-materials. Scan Microsc 8:499–506Google Scholar
  32. Zhao HP, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Nanocellulose Future Composites, Department of Mechanical EngineeringInha UniversityInchonKorea

Personalised recommendations