Skip to main content
Log in

The microscopic morphology of insulation pressboard: an image processing perspective

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To analyze the changes in microscopic morphology of the pressboard under surface partial discharge conditions, some methods such as enhancement, denoising, segmentation, optimization, edge detection, expansion, and corrosion were used to process scanning electron microscope images of the pressboard, so as to extract the fiber width, hole size, and surface roughness. Experiments show that after different thermal aging times, the trends to change in the microscopic morphology of insulation pressboard under partial discharge are different; the microscopic morphology of the pressboard is changed by the breaking of the chemical bonds in the internal structure of the fiber. At a degree of polymerization of 500, the insulation life is only about half of its original value: at this time, the corresponding fiber width is 91.1% of the unaged pressboard fiber width, and the corresponding roughness is 0.162. At a degree of polymerization of 250, the insulation pressboard is nearing the end of its life: at this time, the corresponding fiber width is 79.2% of that of the unaged pressboard, and the corresponding roughness is 0.225.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647

    Article  Google Scholar 

  • C57.91-2011—IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators, pp 97–105

  • Cheng HD, Min R, Zhang M (2010) Automatic wavelet base selection and its application to contrast enhancement. Signal Process 90:1279–1289

    Article  Google Scholar 

  • Cho D, Bui TD (2013) Fast image enhancement in compressed wavelet domain. Signal Process 98:295–307

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  Google Scholar 

  • Davis LS (1975) A survey of edge detection techniques. Comput Gr Image Process 4:248–270

    Article  Google Scholar 

  • Demirel H, Ozcinar C, Anbarjafari G (2010) Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geosci Remote Sens Lett 7:333–337

    Article  Google Scholar 

  • Du Y, Zahn M, Lesieutre BC, Mamishev AV, Lindgren SR (2002) Moisture equilibrium in transformer paper–oil systems. IEEE Electr Insul Mag 15:11–20

    Article  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part A Mol Biomol Spectrosc 53:2383–2392

    Article  Google Scholar 

  • Emsley AM (1994) Kinetics and mechanisms of degradation of cellulose insulation in power transformers. Polym Degrad Stab 44:343–349

    Article  CAS  Google Scholar 

  • Emsley AM, Xiao X, Heywood RJ, Ali M (2000) Degradation of cellulosic insulation in power transformers. Part 2: formation of furan products in insulating oil. IEE Proc Sci Meas Technol 147:110–114

    Article  CAS  Google Scholar 

  • Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59:167–181

    Article  Google Scholar 

  • Flora SD, Rajan JS (2016) Assessment of paper–oil insulation under copper corrosion using polarization and depolarization current measurements. IEEE Trans Dielectr Electr Insul 23:1523–1533

    Article  CAS  Google Scholar 

  • Gao J, Yang LJ, Wang YY, Liu X, Du YY, Yao DY (2016) Effect of moisture and thermal degradation onthe activation energy of oil–paper insulation in frequency domain spectroscopy measurement. IET Gener Transm Distrib 10:2042–2049

    Article  Google Scholar 

  • Garside P, Wyeth P (2006) Identification of cellulosic fibres by FTIR spectroscopy: differentiation of flax and hemp by polarized ATR FTIR. Stud Conserv 51:205–211

    Article  CAS  Google Scholar 

  • Hinterstoisser B, Salmen L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22:111–118

    Article  CAS  Google Scholar 

  • Keyes SD, Cooper L, Duncan S, Koebernick N, Mckay Fletcher DM, Scotson CP, Veelen AV, Sinclair I, Roose T (2017) Measurement of micro-scale soil deformation around roots using four-dimensional synchrotron tomography and image correlation. J R Soc Interface 14:1–13

    Article  Google Scholar 

  • Kim SE, Jeon JJ, Eom IK (2016) Image contrast enhancement using entropy scaling in wavelet domain. Signal Process 127:1–11

    Article  Google Scholar 

  • Liao RJ, Tang C, Yang LJ, Sun CX, Zhang Y (2007) Research on the microstructure and morphology of power transformer insulation paper after thermal aging. Proc CSEE 27:59–64

    Google Scholar 

  • Liao RJ, Yan JM, Yang LJ, Zhu MZ, Sun CX (2011) Characteristics of partial discharge-caused surface damage for oil-impreganted insulation paper. Proc CSEE 31:129–137

    Google Scholar 

  • Loza A, Bull DR, Hill PR, Achim AM (2013) Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients. Digit Signal Process 23:1856–1866

    Article  Google Scholar 

  • Lundgaard LE, Hansen W, Linhjell D, Painter TJ (2004) Aging of oil-impregnated paper in power transformers. IEEE Trans Power Deliv 19:230–239

    Article  CAS  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  • Mao LT, Xue R, An LQ (2008) Quantitative analysis on SEM image of microstructure with MATLAB. J Chin Electr Microsc Soc 23:579–583

    Google Scholar 

  • Martin D, Saha T (2017) A review of the techniques used by utilities to measure the water content of transformer insulation paper. IEEE Electr Insul Mag 33:8–16

    Article  Google Scholar 

  • Montsinger VM (1930) Abridgment of loading transformers by temperature. J AIEE 49:293–297

    Google Scholar 

  • Mozaffari MH, Lee WS (2017) Convergent heterogeneous particle swarm optimisation algorithm for multilevel image thresholding segmentation. IET Image Process 11:605–619

    Article  Google Scholar 

  • Oommen TV, Lindgren SR (2001) Bubble evolution from transformer overload. In: Transmission and distribution conference and exposition, Atlanta, GA, USA, pp 137–142

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Pan Q, Yang F, Ye L, Liang Y, Cheng YM (2005) Survey of a kind of nonlinear filters-UKF. Control Decis 20:481–489

    Google Scholar 

  • Pradhan MK, Ramu TS (2005) On the estimation of elapsed life of oil-immersed power transformers. IEEE Trans Power Deliv 20:1962–1969

    Article  Google Scholar 

  • Prasad DS, Reddy BS (2017) Digital image processing techniques for estimating power released from the corona discharges. IEEE Trans Dielectr Electr Insul 24:75–82

    Article  Google Scholar 

  • Qi B, Tang LR, Zhang J (2008) Research on measurement of hydrophobicity of insulators. Proc CSEE 28:121–124

    Google Scholar 

  • Qin LJ, Chen FS, Wang GS (2004) Effects of fiber properties on the strength properties of paper. Heilongjiang Pulp Pap 32:11–12

    Google Scholar 

  • Shroff DH, Stannett AW (1985) A review of paper aging in power transformers. IEE Proc Gener Transm Distrib 132:312–319

    Article  Google Scholar 

  • Song JC, Yue B, Xie HK (2000) Study on multi-stress aging test system for stator winding insulation of large generator. Proc CSEE 20:9–13

    Google Scholar 

  • Sumengen B, Manjunath BS, Kenney C (2003) Image segmentation using multi-region stability and edge strength. In: International conference on image processing, Barcelona, Spain, pp 142–147

  • Sun PT, Sima WX, Wang M, Wu JY (2016) Influence of thermal aging on the breakdown characteristics of transformer oil impregnated paper. IEEE Trans Dielectr Electr Insul 23:3473–3481

    Google Scholar 

  • Tang JS, Liu XM, Sun QL (2010) A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. IEEE J Sel Top Signal Process 3:74–80

    Article  Google Scholar 

  • Thakur S, Sarathi R, Gautam R, Vinu R (2017) Thermal aging of cellulosic pressboard material and its surface discharge and chemical characterization. Cellulose 24:5197–5210

    Article  CAS  Google Scholar 

  • Tu YP, Chen JJ, Wang SH, Wang W (2016) Moisture migration in oil-impregnated film insulation under thermal ageing. IEEE Trans Dielectr Electr Insul 23:1135–1141

    Article  CAS  Google Scholar 

  • Verma P, Roy M, Verma A, Bhanot V (2001) Assessment of degradation of transformer insulation paper by SEM and X-RD techniques. In: Proceeding of the 2004 IEEE international conference on solid dielectrics, Toulouse, France

  • Verma P, Roy M, Verma A, Bhanot V (2004) Assessment of degradation of transformer insulation paper by structural analysis. J Polym Mater 21:361–369

    CAS  Google Scholar 

  • Wang GL, Wu CW, Dong JX, Xie XS (2001) The application of software photoshop in quantitative study on SEM photos. J Chin Electr Microsc Soc 20:279–282

    CAS  Google Scholar 

  • Wang BJ, Shi B, Cai Y, Tang CS (2008) 3D visualization and porosity computation of clay soil SEM image by GIS. Rock Soil Mech 29:251–255

    Google Scholar 

  • Wang YY, Gong SL, Grzybowski S (2011) Reliability evaluation method for oil-paper insulation in power transformers. Energies 4:1362–1375

    Article  Google Scholar 

  • Wang FC, Yan K, Zhang ZY, Jia ZH, Lyu FC (2014) Segmentation algorithm of hydrophobic image based on improved canny operator. High Volt Appar 50:97–101

    CAS  Google Scholar 

  • Wei YH, Mu HB, Zhang GJ, Chen G (2016) A study of oil-impregnated paper insulation aged with thermal-electrical stress: PD characteristics and trap parameters. IEEE Trans Dielectr Electr Insul 23:3411–3420

    Article  Google Scholar 

  • Xia GQ, Wu GN, Gao B, Yin HJ, Yang FB (2017) A new method for evaluating moisture content and aging degree of transformer oil-paper insulation based on frequency domain spectroscopy. Energies 10:1195–1209

    Article  Google Scholar 

  • Yan JM, Liao RJ, Yang LJ, Hao J, Sun CX (2011) Analysis of damage products of oil-impregnated insulation paper caused by partial discharge. Trans Chin Electrotech Soc 26:184–191

    Google Scholar 

  • Yang PZ, Jiang SW (2002) The study on the 3D assessment of surface roughness. Mach Des Res 18:64–67

    Google Scholar 

  • Zou X, Uesaka T, Gurnagul N (1996) Prediction of paper permanence by accelerated aging I. Kinetic analysis of the aging process. Cellulose 3:243–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y. & Jiang, X. The microscopic morphology of insulation pressboard: an image processing perspective. Cellulose 25, 3051–3065 (2018). https://doi.org/10.1007/s10570-018-1768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1768-5

Keywords

Navigation