, Volume 25, Issue 5, pp 2915–2924 | Cite as

Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers

  • Mahesh Parit
  • Burak Aksoy
  • Zhihua Jiang
Original Paper


Cellulose nanopapers, 2D flat and foldable film made of network-forming cellulose nanofibers, are strong, tough and biodegradable materials of great interest as they have potential to replace the conventional fossil based polymers in various applications. Although there are several cellulose nanopaper preparation methods described in the literature, no standard method is available for the preparation of uniform and smooth nanopapers within a practical time frame. In present study, TAPPI standard method of preparation of pulp handsheets was systemically modified/optimized to prepare flat and wrinkle free cellulose nanopapers in few hours of preparation time. Physical properties of these cellulose nanopapers such as tensile strength and water vapor transmission rate were comparable to the reported values in the literature. The proposed standard preparation method will enable the comparison of the physical properties of cellulose nanopapers prepared in different studies.


Cellulose nanofibers Cellulose nanopaper Drainage time British handsheet maker Restricted drying 



The authors gratefully acknowledge the financial support provided by Alabama Center for Paper and Bioresource Engineering.


  1. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565CrossRefGoogle Scholar
  2. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson L-S, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155CrossRefGoogle Scholar
  3. Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356CrossRefGoogle Scholar
  4. Balea A, Blanco Á, Monte MC, Merayo N, Negro C (2016) Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 11:8123–8138Google Scholar
  5. Bedane AH, Eić M, Farmahini-Farahani M, Xiao H (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membr Sci 493:46–57CrossRefGoogle Scholar
  6. Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRefGoogle Scholar
  7. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRefGoogle Scholar
  8. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRefGoogle Scholar
  9. Cheng Q, Wang S, Rials TG (2009) Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos A Appl Sci Manuf 40:218–224CrossRefGoogle Scholar
  10. Chinga-Carrasco G, Averianova N, Gibadullin M, Petrov V, Leirset I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338CrossRefGoogle Scholar
  11. Dufresne A, Cavaille J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRefGoogle Scholar
  12. Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306CrossRefGoogle Scholar
  13. Eichhorn SJ et al (2010) current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1CrossRefGoogle Scholar
  14. Farmahini-Farahani M, Bedane AH, Pan Y, Xiao H, Eic M, Chibante F (2015) Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength. Cellulose 22:3941–3953. CrossRefGoogle Scholar
  15. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. CrossRefGoogle Scholar
  16. Gao K et al (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251CrossRefGoogle Scholar
  17. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  18. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: J. Appl. Polym. Sci.: Appl. Polym. Symp. (United States), vol 37, no. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WAGoogle Scholar
  19. Johnson J, Ghosh A, Lannutti J (2007) Microstructure–property relationships in a tissue-engineering scaffold. J Appl Polym Sci 104:2919–2927CrossRefGoogle Scholar
  20. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238CrossRefGoogle Scholar
  21. Kumar V et al (2014) Comparison of nano-and microfibrillated cellulose films. Cellulose 21:3443–3456CrossRefGoogle Scholar
  22. Liu F, Yi B, Xing D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223CrossRefGoogle Scholar
  23. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRefGoogle Scholar
  24. Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Proceedings of the transactions of 12th fundamental research symposium, Oxford, pp 225–254Google Scholar
  25. Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552CrossRefGoogle Scholar
  26. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155–159CrossRefGoogle Scholar
  27. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  28. Nogi M et al (2013) High thermal stability of optical transparency in cellulose nanofiber paper. Appl Phys Lett 102:181911CrossRefGoogle Scholar
  29. Olsson RT et al (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRefGoogle Scholar
  30. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefGoogle Scholar
  31. Raj P, Varanasi S, Batchelor W, Garnier G (2015) Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J Colloid Interface Sci 447:113–119CrossRefGoogle Scholar
  32. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134. CrossRefGoogle Scholar
  33. Salminen T, Hippi U, Salminen A (2014) Method for the preparation of NFC films on supports. Google PatentsGoogle Scholar
  34. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  35. Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049CrossRefGoogle Scholar
  36. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  37. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRefGoogle Scholar
  38. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRefGoogle Scholar
  39. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219CrossRefGoogle Scholar
  40. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75CrossRefGoogle Scholar
  41. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294CrossRefGoogle Scholar
  42. TAPPI TM (1988) Physical testing of pulp handsheetsGoogle Scholar
  43. TAPPI T (2000) Forming handsheets for physical tests of pulp. Technical Association of the Pulp and Paper Industry 205Google Scholar
  44. TAPPI Press, Atlanta, T 220 om-88Google Scholar
  45. Tonoli G, Teixeira E, Corrêa A, Marconcini J, Caixeta L, Pereira-da-Silva M, Mattoso L (2012) Cellulose micro/nanofibres from eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRefGoogle Scholar
  46. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: J. Appl. Polym. Sci.: Appl. Polym. Symp. (United States), vol 37, no. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WAGoogle Scholar
  47. Vallejos ME, Felissia FE, Area MC, Ehman NV, Tarrés Q, Mutjé P (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr Polym 139:99–105CrossRefGoogle Scholar
  48. Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215CrossRefGoogle Scholar
  49. Varanasi S, Batchelor W (2014) Superior non-woven sheet forming characteristics of low-density cationic polymer–cellulose nanofibre colloids. Cellulose 21:3541–3550CrossRefGoogle Scholar
  50. Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896CrossRefGoogle Scholar
  51. Varanasi S, Low Z-X, Batchelor W (2015) Cellulose nanofibre composite membranes–biodegradable and recyclable UF membranes. Chem Eng J 265:138–146CrossRefGoogle Scholar
  52. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89CrossRefGoogle Scholar
  53. Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643CrossRefGoogle Scholar
  54. Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152CrossRefGoogle Scholar
  55. Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574CrossRefGoogle Scholar
  56. Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344CrossRefGoogle Scholar
  57. Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287CrossRefGoogle Scholar
  58. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar
  59. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA
  2. 2.Alabama Center for Paper and Bioresource EngineeringAuburn UniversityAuburnUSA

Personalised recommendations