, Volume 25, Issue 4, pp 2615–2628 | Cite as

Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red

  • Ung-Jin Kim
  • Dabum Kim
  • Jungmok You
  • Joon Weon Choi
  • Satoshi Kimura
  • Masahisa Wada
Original Paper


Herein, we present a new process for the preparation of cellulose-chitosan foams using an aqueous lithium bromide (LiBr) solution. After obtaining hydrogels via dissolution-regeneration from an aqueous LiBr solution and methanol, cellulose-chitosan foams were prepared via solvent exchange (water → ethanol → t-butyl alcohol) followed by freeze-drying. The amino group content and elemental analysis confirmed the successful preparation of three foam grades by controlling the blend ratio of cellulose and chitosan. The cellulose-chitosan foams possessed three-dimensional porous networks composed of nano-fibrils. The swelling properties of the foams improved due to the presence of amino groups. The cellulose-chitosan foams exhibited a higher adsorption capacity (1170.2 mg/g) of Congo red compared to the cellulose (623.2 mg/g). The adsorption–desorption process of Congo red demonstrated the strong interactions between chitosan and Congo red. The cellulose-chitosan foams could be applied as an adsorbent for the treatment of industrial wastewater, especially for anionic dyes.


Cellulose Chitosan LiBr Foam Adsorbent 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2015R1D1A1A01058918 and NRF-2018R1A2B6002983).


  1. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1:149–154CrossRefGoogle Scholar
  2. Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112:7721–7725CrossRefGoogle Scholar
  3. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloid Surf A 299:146–152CrossRefGoogle Scholar
  4. Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour Technol 100:2803–2809CrossRefGoogle Scholar
  5. Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806CrossRefGoogle Scholar
  6. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRefGoogle Scholar
  7. Dawood S, Sen TK (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res 46:1933–1946CrossRefGoogle Scholar
  8. Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221CrossRefGoogle Scholar
  9. Enomoto-Rogers Y, Kimura S, Iwata T (2016) Soft, tough, and flexible curdlan hydrogels and organogels fabricated by covalent cross-linking. Polymer 100:143–148CrossRefGoogle Scholar
  10. Fierro V, Tornè-Fernández V, Montane D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor Mesopor Mater 111:276–284CrossRefGoogle Scholar
  11. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  12. García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 117:797–806CrossRefGoogle Scholar
  13. Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRefGoogle Scholar
  14. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRefGoogle Scholar
  15. Hou H, Zhou R, Wu P, Wu L (2012) Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem Eng J 211–212:336–342CrossRefGoogle Scholar
  16. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  17. Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRefGoogle Scholar
  18. Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017a) Protein adsorption of dialdehyde cellulose-crosslinked chitosan withhigh amino group contents. Carbohydr Polym 163:34–42CrossRefGoogle Scholar
  19. Kim UJ, Kim HJ, Choi JW, Kimura S, Wada M (2017b) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRefGoogle Scholar
  20. Kim HJ, Yang YJ, Oh HJ, Kimura S, Wada M, Kim UJ (2017c) Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 24:5079–5088CrossRefGoogle Scholar
  21. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem 126:10562–10565CrossRefGoogle Scholar
  22. Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399CrossRefGoogle Scholar
  23. Kuga S, Kim DY, Nishiyama Y, Brown RM (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:237–243CrossRefGoogle Scholar
  24. Kwak HW, Shin M, Yun H, Lee KH (2016) Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. Int J Mol Sci 17:1466CrossRefGoogle Scholar
  25. Lao L, Tan H, Wang Y, Gao C (2008) Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloid Surf B-Biointerfaces 66:218–225CrossRefGoogle Scholar
  26. Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117CrossRefGoogle Scholar
  27. Lian L, Guo L, Guo C (2009) Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J Hazard Mater 229:126–131CrossRefGoogle Scholar
  28. Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352CrossRefGoogle Scholar
  29. Liu Z, Wang H, Li B, Liu C, Jiang Y, Yua G, Mu X (2012) Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J Mater Chem 22:15085–15091CrossRefGoogle Scholar
  30. Lorene-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40CrossRefGoogle Scholar
  31. Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloid Surface A 278:175–187CrossRefGoogle Scholar
  32. Mansur HS, Costa-Júnior ES, Mansur AAP, Barbosa-Stancioli EF (2009) Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mat Sci Eng C-Mater 29:1574–1583CrossRefGoogle Scholar
  33. Mansur HS, Mansur AAP, Curti E, De Almeida MV (2013) Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 1:1696–1711CrossRefGoogle Scholar
  34. Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355:2472–2479CrossRefGoogle Scholar
  35. Meng G, Peng H, Wu J, Wang Y, Wang H, Liu Z, Guo X (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fiber Polym 18:706–712CrossRefGoogle Scholar
  36. Naito PK, Ogawa Y, Kimura S, Iwata T, Wada M (2015) Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J Polym Sci Poly Phys 53:1065–1069CrossRefGoogle Scholar
  37. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefGoogle Scholar
  38. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  39. Peng H, Wu J, Wang Y, Wang H, Liu Z, Shi Y, Guo X (2016) A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation. Appl Phys A 122:516CrossRefGoogle Scholar
  40. Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513CrossRefGoogle Scholar
  41. Prata AS, Grosso CRF (2015) Production of microparticles with gelatin and chitosan. Carbohydr Polym 116:292–299CrossRefGoogle Scholar
  42. Quignard F, Valentin R, Renzo FD (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310CrossRefGoogle Scholar
  43. Sakai K, Kobayashi Y, Saito T, Isogai A (2016) Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Sci Rep 6:20434CrossRefGoogle Scholar
  44. Samiey B, Dargahi MR (2010) Kinetics and thermodynamics of adsorption of congo red on cellulose. Open Chem 8:906–912Google Scholar
  45. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644CrossRefGoogle Scholar
  46. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  47. Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H (1996) Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int J Biol Macromol 18:237–242CrossRefGoogle Scholar
  48. Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174CrossRefGoogle Scholar
  49. Stefanescu C, Daly WH, Negulescu II (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87:435–443CrossRefGoogle Scholar
  50. Stievano M, Elvassore N (2005) High-pressure density and vapor–liquid equilibrium for the binary systems carbon dioxide–ethanol, carbon dioxide-acetone and carbon dioxide-dichloromethane. J Supercrit Fluid 33:7–14CrossRefGoogle Scholar
  51. Valentin R, Horga R, Bonelli B, Garrone E, Renzo FD, Quignard F (2005) Acidity of alginate aerogels studied by FTIR spectroscopy of probe molecules. Macromol Symp 230:71–77CrossRefGoogle Scholar
  52. Wang L, Wang A (2007) Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979–985CrossRefGoogle Scholar
  53. Wang L, Wang A (2008a) Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. J Hazard Mater 160:173–180CrossRefGoogle Scholar
  54. Wang L, Wang A (2008b) Adsorption properties of congo red from aqueous solution onto N, O-carboxymethyl-chitosan. Bioresour Technol 99:1403–1408CrossRefGoogle Scholar
  55. Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRefGoogle Scholar
  56. Woodcock S, Henrissat B, Sugiyama J (1995) Docking of Congo red to the surface of crystalline cellulose using molecular membrane. Biopolymers 36:201–210CrossRefGoogle Scholar
  57. Wu YB, Ye SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440CrossRefGoogle Scholar
  58. Wu C, Scott J, Shea JE (2012) Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ9–40 peptide probed by molecular dynamics simulations. Biophys J 103:550–557CrossRefGoogle Scholar
  59. Yang YJ, Shin JM, Kang TH, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in aqueous lithium bromide solution. Cellulose 21:1175–1181CrossRefGoogle Scholar
  60. Yuguchi Y, Hirotsu T, Hosokawa J (2005) Structural characteristics of xyloglucan–Congo red aggregates as observed by small angle X-ray scattering. Cellulose 12:469–477CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant and Environmental New Resources, College of Life SciencesKyung Hee UniversityYongin-siRepublic of Korea
  2. 2.Graduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National UniversityPyeongchangRepublic of Korea
  3. 3.Department of Biomaterials Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  4. 4.Division of Forest and Biomaterials Science, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations