Advertisement

Cellulose

, Volume 25, Issue 4, pp 2331–2341 | Cite as

Physico-chemical description of titanium dioxide–cellulose nanocomposite formation by microwave radiation with high thermal stability

  • Gabriel Valim Cardoso
  • Lucas Roberto Di Salvo Mello
  • Paula Zanatta
  • Sergio Cava
  • Cristiane Wienke Raubach
  • Mario Lucio Moreira
Original Paper
  • 192 Downloads

Abstract

Titanium dioxide–cellulose nanocomposites were nucleated and grown by decomposition of titanium isopropoxide in ethanol media together with wood cellulose fibers into the microwave-assisted solvothermal (MAS) system; the low temperature and fast formation time of the nanocomposites stand out in this methodology. The MAS method was successfully applied in the synthesis of TiO2 with anatase structure in wood cellulose fibers to produce TiO2–cellulose nanocomposites based on hydrolysis, condensation and subsequent polymerization of titanium nanoparticles on cellulose fibers. Through scanning electron microscope it was possible to confirm nanocomposite formation by impregnation/nucleation/growth of titanium dioxide (TiO2) nanoparticles on the fiber walls. The nanocomposites X-ray powder diffraction showed peaks of crystalline titanium dioxide anatase phase associated to additional cellulose diffraction remarks, as well as the absence of the CaCO3 phase, proving the nanocomposite design concept. This means that the inclusion of TiO2 nanoparticles on fibers does not alter the crystalline structure of cellulose, also confirmed by Fourier-transform mid-infrared spectroscopy. Based on the thermogravimetric analysis, nanocomposites are thermally more stable than pure cellulose, reaching a 19% difference of mass loss reduction.

Keywords

Cellulose TiO2 Microwave solvothermal Nanocomposites Thermal stability 

Notes

Acknowledgments

The authors acknowledge the support of the Brazilian agencies CAPES, CNPq (458452/2014-9) and FAPERGS (16/2551-0000525-7). The authors thank the CEME-Sul (Centro de Microscopia Eletronica da Zona Sul at Federal University of Rio Grande, Brazil) for the scanning electron microscopy and X-ray powder diffraction support.

References

  1. Afsharpour M, Rad FT, Malekian H (2011) New cellulosic titanium dioxide nanocomposite as a protective coating for preserving paper-art-works. J Cult Herit 12:380–383CrossRefGoogle Scholar
  2. Aggrawal S, Chauhan I, Mohanty P (2015) Immobilization of Bi2O3 nanoparticles on the cellulose fibers of paper matrices and investigation of its antibacterial activity against E. coli in visible light. Mater Express 5:429–436CrossRefGoogle Scholar
  3. Bet-moushoul E, Mansourpanah Y, Farhadi Kh, Tabatabaei M (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem Eng J 283:29–46CrossRefGoogle Scholar
  4. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374CrossRefGoogle Scholar
  5. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39CrossRefGoogle Scholar
  6. Chauhan I, Mohanty P (2014) Immobilization of titania nanoparticles on the surface of cellulose fibres by a facile single step hydrothermal method and study of their photocatalytic and antibacterial activities. RSC Adv 4:57885–57890CrossRefGoogle Scholar
  7. Daoud WA, Xin JH (2004) Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. J Am Ceram Soc 87:953–955CrossRefGoogle Scholar
  8. Drobne D (2018) Spotlighting CLH report for TiO2: nano-safety perspective. Chem Eng J.  https://doi.org/10.1016/j.cej.2018.01.007
  9. Du YL, Deng Y, Zhang MS (2006) Variable-temperature Raman scattering study on anatase titanium dioxide nanocrystals. J Phys Chem Solids 67:2405–2408CrossRefGoogle Scholar
  10. Echa (2017) Committee for risk assessment. Opinion proposing harmonised classification and labelling at EU level of titanium dioxide. https://echa.europa.eu/documents/10162/6cf0942a-6e18-5ce9-fc95-5cd7fd2fbdad. Accessed 27 Jan 2018
  11. El-Naggar ME, Shaheen TI, Zaghloul S, El-Rafie MH, Hebeish A (2016) Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind Eng Chem Res 55:2661–2668CrossRefGoogle Scholar
  12. El-Shafei A, ElShemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym 118:83–90CrossRefGoogle Scholar
  13. Fawcett TG, Crowder CE, Kabekkodu SN, Needham F, Kaduk JA, Blanton TN, Petkov V, Bucher E, Shpanchenko R (2013) Reference materials for the study of polymorphism and crystallinity in cellulosics. Powder Diffr 28:18–31CrossRefGoogle Scholar
  14. Figueiredo LP, Ferreira FF (2014) The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci 103:1394–1399CrossRefGoogle Scholar
  15. Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575CrossRefGoogle Scholar
  16. Giesz P, Celichowski G, Puchowicz D, Kaminska I, Grobelny J, Batory D, Cieslak M (2016) Microwave-assisted TiO2: anatase formation on cotton and viscose fabric surfaces. Cellulose 23:2143–2159CrossRefGoogle Scholar
  17. Gonçalves G, Marques PAAP, Pinto RJB, Trindade T, Neto CP (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69:1051–1056CrossRefGoogle Scholar
  18. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406CrossRefGoogle Scholar
  19. Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110CrossRefGoogle Scholar
  20. Jena A, Vinu R, Shivashankar SA, Madras G (2010) Microwave assisted synthesis of nanostructured titanium dioxide with high photocatalytic activity. Ind Eng Chem Res 49:9636–9643CrossRefGoogle Scholar
  21. Karimi L, Yazdanshenas ME, Khajavi R, Rashidi A, Mirjalili M (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827CrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  23. Liu Y, Yang S, Hong J, Sun C (2007) Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. J Hazard Mater 142:208–215CrossRefGoogle Scholar
  24. Liu LM, Crawford P, Hu P (2009) The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog Surf Sci 84:155–176CrossRefGoogle Scholar
  25. Livage J, Sanchez C (1992) Sol–gel chemistry. J Non-Cryst Solids 145:11–19CrossRefGoogle Scholar
  26. Maniruzzaman M, Jang SD, Kim J (2012) Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Mater Sci Eng, B 177:844–848CrossRefGoogle Scholar
  27. Marques PAAP, Trindade T, Neto CP (2006) Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. Compos Sci Technol 66:1038–1044CrossRefGoogle Scholar
  28. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  29. Morawski AW, Kusiak-Nejman E, Przepiórski J, Kordala R, Pernak J (2013) Cellulose–TiO2 nanocomposite with enhanced UV–Vis light absorption. Cellulose 20:1293–1300CrossRefGoogle Scholar
  30. Moreira ML, Andres J, Varela JA, Longo E (2009) Synthesis of fine micro-sized BaZrO3 powders based on a decaoctahedron shape by the microwave-assisted hydrothermal method. Cryst Growth Des 9:833–839CrossRefGoogle Scholar
  31. Moura KF, Maul J, Albuquerque AR, Casali GP, Longo E, Keyson D, Souza AG, Sambrano R, Santos IMG (2014) TiO2 synthesized by microwave assisted solvothermal method: experimental and theoretical evaluation. J Solid State Chem 210:171–177CrossRefGoogle Scholar
  32. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose . Biomacromol 9:3133–3140CrossRefGoogle Scholar
  33. Radetic M (2013) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol, C 16:62–76CrossRefGoogle Scholar
  34. Raman N, Sudharsan S, Pothiraj K (2012) Synthesis and structural reactivity of inorganic–organic hybrid nanocomposites—a review. J Saudi Chem Soc 16:339–352CrossRefGoogle Scholar
  35. Tang J, Chen K, Xu J, Li J, Zhao C (2011) Effects of dilute acid hydrolysis on composition na structure of cellulose in Eucaliopsis binata. BioResources 6:1069–1078Google Scholar
  36. Technical Association of the Pulp and Paper Industry (TAPPI) (2012) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. TAPPI test methodsGoogle Scholar
  37. Tian H, He J (2016) Cellulose as a scaffold for self-assembly: from basic research to real applications. Langmuir 32:12269–12282CrossRefGoogle Scholar
  38. Zanatta P, Lazarotto M, Cadermatori PHG, Cava SS, Moreira ML, Gatto DA (2017) Effect of titanium dioxide nanoparticles obtained by the microwave assisted hydrothermal method on the color and the decay resistance of pine wood. Maderas. Ciencia y tecnologia 19:495–506Google Scholar
  39. Zhang J, Li L, Li Y, Yang C (2017) Microwave-assisted synthesis of hierarchical mesoporous nano-TiO2/cellulose composites for rapid adsorption of Pb2+. Chem Eng J 313:1132–1141CrossRefGoogle Scholar
  40. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Gabriel Valim Cardoso
    • 1
    • 2
  • Lucas Roberto Di Salvo Mello
    • 2
  • Paula Zanatta
    • 2
  • Sergio Cava
    • 2
  • Cristiane Wienke Raubach
    • 2
  • Mario Lucio Moreira
    • 2
    • 3
  1. 1.Engineering Center, Wood Industrial EngineeringFederal University of PelotasPelotasBrazil
  2. 2.Technology Development Center, CCAF, Advanced Crystal Growth and PhotonicsFederal University of PelotasPelotasBrazil
  3. 3.Physical Departament, CCAF, Advanced Crystal Growth and PhotonicsPhysical and Mathematics InstitutePelotasBrazil

Personalised recommendations