Cellulose

, Volume 25, Issue 4, pp 2451–2471 | Cite as

Improvement of fibre–matrix adhesion in cellulose/polyolefin composite materials by means of photo-chemical fibre surface modification

  • Thomas Bahners
  • Milan Kelch
  • Beate Gebert
  • Xochitli L. Osorio Barajas
  • Torsten C. Schmidt
  • Jochen S. Gutmann
  • Jörg Müssig
Original Paper
  • 64 Downloads

Abstract

The mechanical performance of composites made from viscose fibre reinforcement fabrics and PP matrix polymers could be enhanced by photo-chemical surface modification of the viscose fibres. The surface modification was achieved by deposition of UV-polymerized organic thin layers using pentaerythritol triacrylate or diallylphthalate as monomers. The main effects of the photo-chemical modification refer to a decrease in wettability of the highly hydrophilic and water adsorbing viscose fibres and an increase in their affinity towards non-polar substances. Both effects were found to yield an increase in fibre–matrix adhesion and interfacial shear strength, resulting in better impact and tensile properties compared to untreated samples. The experimental composites were slightly inferior with regard to fibre–matrix adhesion and IFSS than established systems using modified matrix polymers such as the maleic anhydride modified PP, but exhibited similar or even improved properties in view of tensile strength and impact behaviour. The latter indicates superior energy transfer by the thin organic layers forming the fibre–matrix interface. Based on these observations, the studied concept of photo-polymerized inter-layers between fibre and matrix can be understood as a biomimetic concept mimicking the graded transitions of natural structures.

Keywords

Bio-based composites Fibre–matrix-adhesion Inter-layers Photo-polymerization Thin layer deposition Viscose 

Notes

Acknowledgments

The research project IGF-Nr. 18059 N of Forschungskuratorium Textil e. V. was funded by the Bundesministerium für Wirtschaft und Energie in the framework of the program Industrielle Gemeinschaftsforschung (IGF) on the basis of a decision by Deutscher Bundestag. The authors are indebted to Mr. Andy Dentel and Mr. Stefan Seidel, BOND Laminates, Brilon, Germany for their great support, for many fruitful discussions and the opportunity to use their equipment for cell phone shell manufacturing. The kind help by Cordenka GmbH & Co. KG (Obernburg, Germany) and Mr. Rudolf Einsiedel by providing Cordenka® fabrics for the experiments is greatly acknowledged. Thanks go to Thorben Fröhlking and Marie Hartwig for support of the experimental work at HSB.

References

  1. Abdolahifard M, Hajir Bahrami S, Malek RMA (2011) Surface modification of PET fabric by graft copolymerization with acrylic acid and its antibacterial properties. ISRN Org Chem 2011:265415CrossRefGoogle Scholar
  2. Adusumali RB, Reifferscheid M, Weber HK, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibers for composites. Macromol Symp 244:119–125CrossRefGoogle Scholar
  3. Adusumalli RB, Weber HK, Roeder T, Sixta H, Gindl W (2010) Evaluation of experimental parameters in the microbond test with regard to lyocell fibers. J Reinf Plast Compos 29:2356–2367CrossRefGoogle Scholar
  4. Aeschelmann F, Carus M (2015) Bio-based building blocks and polymers in the world capacities, production and applications: status quo and trends towards 2020. nova Institutu GmbH, Hürth, GermanyGoogle Scholar
  5. Albano C, González J, Ichazo M, Kaiser D (1999) Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 66:179–190CrossRefGoogle Scholar
  6. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos B 28:13–20CrossRefGoogle Scholar
  7. Bahners T (2011) The “dos” and “don’ts” of wettability characterization in textiles. J Adhes Sci Technol 25:2005–2021CrossRefGoogle Scholar
  8. Bahners T, Gutmann JS (2016) Making use of bulk properties of photo-polymerized thin layers for improved or new properties of synthetic fibers. Surf Innov 4:14–22CrossRefGoogle Scholar
  9. Bahners T, Häßler R, Gao SL, Mäder E, Wego A, Schollmeyer E (2009) Photochemical surface modification of PP for abrasion resistance. Appl Surf Sci 255:9139–9145CrossRefGoogle Scholar
  10. Bahners T, Klingelhöller K, Ulbricht M, Wego A, Schollmeyer E (2011) Photo-chemical surface modification for the control of protein adsorption on textile substrates. J Adhes Sci Technol 25:2219–2238CrossRefGoogle Scholar
  11. Bahners T, Mölter-Siemens W, Haep S, Gutmann JS (2014) Control of oil-wetting on technical textiles by means of photo-chemical surface modification and its relevance to the performance of compressed air filters. Appl Surf Sci 313:93–101CrossRefGoogle Scholar
  12. Belgacem M, Gandini A (2005) The surface modification of cellulose fibers for use as reinforcing elements in composite materials. Compos Interfaces 12:41–75CrossRefGoogle Scholar
  13. Bledzki AK, Gassan J (1996) Einfluss von Haftvermittlern auf das Feuchteverhalten naturfaserverstärkter Kunststoffe. Angew Makromol Chem 236:129–138CrossRefGoogle Scholar
  14. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fiber. Compos Sci Technol 70:854–860CrossRefGoogle Scholar
  15. Borja Y, Rieß G, Lederer K (2006) Synthesis and characterization of polypropylene reinforced with cellulose I and II fibers. J Appl Polym Sci 101:364–369CrossRefGoogle Scholar
  16. Boutboul A, Lenfant F, Giampaoli P, Feigenbaum A, Ducruetb V (2002) Use of inverse gas chromatography to determine thermodynamic parameters of aroma–starch interactions. J Chromatogr A 969:9–16CrossRefGoogle Scholar
  17. Canché-Escamilla G, Rodríguez-Trujillo G, Herrera-Franco PJ, Mendizábal E, Puig JE (1997) Preparation and characterization of henequen cellulose grafted with methyl methacrylate and its application in composites. J Appl Polym Sci 66:339–346CrossRefGoogle Scholar
  18. Chen Y, Chen D, Ma Y, Yang W (2014) Multiple levels hydrophobic modification of polymeric substrates by UV-grafting polymerization with TFEMA as monomer. J Polym Sci A: Polym Chem 52:1059–1067CrossRefGoogle Scholar
  19. Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193CrossRefGoogle Scholar
  20. Doan TTL, Gao SL, Mäder E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66:952–963CrossRefGoogle Scholar
  21. Doroudgarian N, Pupure L, Joffe R (2015) Moisture uptake and resulting mechanical response of bio-based composites. II. Composites. Polym Compos 36:1510–1519CrossRefGoogle Scholar
  22. Dritsas GS, Karatasos K, Panayiotou C (2009) Investigation of thermodynamic properties of hyperbranched aliphatic polyesters by inverse gas chromatography. J Chromatogr A 1216:8979–8985CrossRefGoogle Scholar
  23. Enomoto R, Sato M, Fujii S, Hirai T, Takahara A, Ishihara K, Yusa S (2014) Surface patterned graft copolymerization of hydrophilic monomers onto hydrophobic polymer film upon UV irradiation. J Polym Sci A: Polym Chem 52:2822–2829CrossRefGoogle Scholar
  24. Erdmann J, Ganster J (2011) Einfluss des Faserdurchmessers auf die Struktur und Mechanik Cellulosefaser-verstärkter PLA-Komposite. Lenzinger Berichte 89:91–102Google Scholar
  25. Felix J, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42:609–620CrossRefGoogle Scholar
  26. Ganster J, Fink HP (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13:271–280CrossRefGoogle Scholar
  27. Ganster J, Fink HP, Pinnow M (2006) High-tenacity man-made cellulose fibre reinforced thermoplastics—injection moulding compounds with polypropylene and alternative matrices. Compos A 37:1796–1804CrossRefGoogle Scholar
  28. Gao SL, Häßler R, Mäder E, Bahners T, Opwis K, Schollmeyer E (2005) Photochemical surface modification of PET by excimer lamp irradiation. Appl Phys B 81:681–690CrossRefGoogle Scholar
  29. Gassan J, Bledzki A (2000) Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification—jute polypropylene composites. Appl Compos Mater 7:373–385CrossRefGoogle Scholar
  30. George J, Sreekala M, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485CrossRefGoogle Scholar
  31. Graupner N, Albrecht K, Hegemann D, Müssig J (2013) Plasma modification of man-made cellulose fibers (Lyocell) for improved fiber/matrix adhesion in poly (lactic acid) composites. J Appl Polym Sci 128:4378–4386CrossRefGoogle Scholar
  32. Hajlane A, Kaddami H, Joffe R, Wallström L (2013) Design and characterization of cellulose fibers with hierarchical structure for polymer reinforcement. Cellulose 20:2765–2778CrossRefGoogle Scholar
  33. Hajlane A, Kaddami H, Joffe R (2017) Chemical modification of regenerated cellulose fibres by cellulose nano-crystals: towards hierarchical structure for structural composites reinforcement. Ind Crops Prod 100:41–50CrossRefGoogle Scholar
  34. Hassan MM, Wagner MH (2016) Surface modification of natural fibers for reinforced polymer composites: a critical review. Rev Adhes Adhes 4:1–16CrossRefGoogle Scholar
  35. Herrera-Franco PJ, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos A 35:339–345CrossRefGoogle Scholar
  36. Herrera-Franco PJ, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos B 36:597–608CrossRefGoogle Scholar
  37. Huber T, Müssig J (2008) Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos Interfaces 15:335–349CrossRefGoogle Scholar
  38. Jańczuk B, Wójcik W, Zdziennicka A (1993) Determination of the components of the surface tension of some liquids from interfacial liquid-liquid tension measurements. J Colloid Interface Sci 157:384–393CrossRefGoogle Scholar
  39. Joly C, Gauthier R, Escoubes M (1996) Partial masking of cellulosic fiber hydrophilicity for composite applications. Water sorption by chemically modified fibers. J Appl Polym Sci 61:57–69CrossRefGoogle Scholar
  40. Jose C, Thomas MS, Deepa B, Pothan LA, Thomas S (2014) Adhesion and surface issues in biocomposites and bionanocomposites: a critical review. Rev Adhes Adhes 2:173–225CrossRefGoogle Scholar
  41. Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P, Pavithran C (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fiber reinforced polymer composites. Eur Polym J 32:1243–1250CrossRefGoogle Scholar
  42. Joseph P, Rabello M, Mattoso L, Jospeh K, Thomas S (2002) Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos Sci Technol 62:1357–1372CrossRefGoogle Scholar
  43. Kaichang L, Renhui Q, Wendi L (2015) Improvement of interfacial adhesion in natural plant fiber-reinforced unsaturated polyester composites: a critical review. Rev Adhes Adhes 3:98–120CrossRefGoogle Scholar
  44. Karlsson JO, Blachot JF, Peguy A, Gatenholm P (1996) Improvement of adhesion between polyethylene and regenerated cellulose fibers by surface fibrillation. Polym Compos 17:300–304CrossRefGoogle Scholar
  45. Kim JK, Mai YW (1991) High strength, high fracture toughness fibre composites with interface control—a review. Compos Sci Technol 41:333–378CrossRefGoogle Scholar
  46. Li H, Shen S (2011) Experimental investigation on mechanical behavior of Moso Bamboo vascular bundles. Key Eng Mater 462–463:744–749CrossRefGoogle Scholar
  47. Mader A, Volkmann E, Einsiedel R, Müssig J (2012) Impact and flexural properties of unidirectional man-made cellulose reinforced thermoset composites. J Biobased Mater Bioenergy 6:481–492CrossRefGoogle Scholar
  48. Mader A, Kondor A, Schmid T, Einsiedel R, Müssig J (2016) Surface properties and fiber-matrix adhesion of man-made cellulose epoxy composites—influence on impact properties. Compos Sci Technol 123:163–170CrossRefGoogle Scholar
  49. Mechraoui A, Riedl B, Rodrigue D (2007) The effect of fiber and coupling agent content on the mechanical properties of hemp/polypropylene composites. Compos Interfaces 14:837–848CrossRefGoogle Scholar
  50. Mieck KP, Nechwatal A, Knobelsdorf C (1995a) Fiber-matrix adhesion in composites of a thermoplastic matrix and flax. 1. Pretreatment of flax fibers with silanes. Angew Makromol Chem 244:73–88CrossRefGoogle Scholar
  51. Mieck KP, Nechwatal A, Knobelsdorf C (1995b) Faser-Matrix-Haftung in Kunststoffverbunden aus thermoplastischer Matrix und Flachs, 2: die Anwendung von funktionalisiertem Polypropylen. Angew Makromol Chem 225:37–49CrossRefGoogle Scholar
  52. Mirza FA, Rasel SM, Kim MS, Afsar AM, Kim BS, Song JI (2010) Lyocell fiber reinforced polypropylene composites: effect of matrix modification. Adv Mater Res 123–125:1159–1162CrossRefGoogle Scholar
  53. Mohamed NH, Wego A, Bahners T, Gutmann JS, Ulbricht M (2012) Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide. Appl Surf Sci 259:261–269CrossRefGoogle Scholar
  54. Müssig J (ed) (2010) Industrial applications of natural fibers—structure, properties and technical applications. Wiley, ChichesterGoogle Scholar
  55. Müssig J, Graupner N (2017) Characterisation of fibre/matrix adhesion in biobased fibre-reinforced thermoplastic composites. In: Mittal KL, Bahners T (eds) Textile finishing: recent developments and future trends. Scrivener Publishing, Beverly, pp 485–556CrossRefGoogle Scholar
  56. Müssig J, Haag K (2014) The use of flax fibers as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Woodhead Publishing Ltd., Cambrige, pp 35–85Google Scholar
  57. Nema S, Ludwig JD (2010) Pharmaceutical dosage forms—parenteral medications. Third Edition: Volume 3: Regulations, validation and the future, CRC Press, Boca RatonGoogle Scholar
  58. Netravali A, Bahners T (2010) Adhesion promotion in fibers and textiles using photonic surface modifications. J Adhes Sci Technol 24:45–75CrossRefGoogle Scholar
  59. Osorio Barajas XL, Jochmann MA, Hüffer T, Schilling B, Schmidt TC (2017) Sorbent material characterization using in-tube extraction needles as inverse gas chromatography column. J Sep Sci 40:2390–2397CrossRefGoogle Scholar
  60. Park JM, Quang ST, Hwang BS, DeVries KL (2006) Interfacial evaluation of modified jute and hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Compos Sci Technol 66:2686–2699CrossRefGoogle Scholar
  61. Periolatto M, Ferrero F (2013) Cotton filter fabrics functionalization by chitosan UV-grafting for removal of dyes. Chem Eng Trans 32:85–90Google Scholar
  62. Praschak D, Bahners T, Schollmeyer E (2000) Excimer UV lamp irradiation induced grafting on synthetic polymers. Appl Phys A 71:577–581CrossRefGoogle Scholar
  63. Raj RG, Kokta BV, Maldas D, Daneault C (1989) Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene–wood fiber composites. J Appl Polym Sci 37:1089–1103CrossRefGoogle Scholar
  64. Ray A, Mondal S, Das S, Ramachandrarao P (2005) Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. J Mater Sci 40:5249–5253CrossRefGoogle Scholar
  65. Rulison C (2017) Two-component surface energy characterization as a predictor of wettability and dispersability. Krüss application note #213. http://www.surfchem.co.kr/newapplications/pdf/16.pdf, 2000. Accessed 11.08.2017.
  66. Thomason JL, Vlug MA (1997) Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 4. Impact properties. Compos Part A 28:277–288CrossRefGoogle Scholar
  67. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320CrossRefGoogle Scholar
  68. Voelkel A (1991) Inverse gas chromatography: characterization of polymers, fibers, modified silicas, and surfactants. Crit Rev Anal Chem 22:411–439CrossRefGoogle Scholar
  69. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  70. Yuan XW, Jayaraman K, Bhattacharyya D (2007) Mechanical performance of plasma-treated natural fiber-polypropylene composites. In: Fakirov S, Bhattacharyya D (eds) Handbook of engineering biopolymers—homopolymers, blends and composites. Carl Hanser Verlag, München, pp 379–415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Thomas Bahners
    • 1
  • Milan Kelch
    • 2
  • Beate Gebert
    • 1
  • Xochitli L. Osorio Barajas
    • 3
    • 6
  • Torsten C. Schmidt
    • 3
  • Jochen S. Gutmann
    • 1
    • 4
    • 5
  • Jörg Müssig
    • 2
  1. 1.Deutsches Textilforschungszentrum Nord-West gGmbHKrefeldGermany
  2. 2.The Biological Materials Group, Faculty 5, BiomimeticsHSB – City University of Applied Sciences BremenBremenGermany
  3. 3.Instrumental Analytical ChemistryUniversity of Duisburg-EssenEssenGermany
  4. 4.Physical ChemistryUniversity of Duisburg-EssenEssenGermany
  5. 5.CENIDEDuisburgGermany
  6. 6.Analytical SciencesDow Deutschland Anlagengesellschaft mbHStadeGermany

Personalised recommendations