, Volume 25, Issue 4, pp 2711–2720 | Cite as

TiO2–SiO2 Janus particles for photocatalytic self-cleaning of cotton fabric

  • Kamlesh Panwar
  • Manjeet Jassal
  • Ashwini K. Agrawal
Original Paper


Titania nanoparticles (TiO2 NPs), when applied directly on textile surfaces for self-cleaning applications, often result in poor wash durability and degradation of the substrate on exposure to UV light. Janus structures having nano-titania deposited on one half of silica (SiO2) particles have been explored to address these issues. The Janus particles could be applied on cotton fabric at neutral pH and exhibited higher photocatalytic activity under neutral conditions unlike TiO2 NPs, which required strongly acidic environment both during application and photocatalysis. The Janus particles attached durably to the fabric through their SiO2 surface with TiO2 layer facing upwards resulting in formation of a SiO2 bridge between the active TiO2 layer and the fabric surface. The improved properties were attributed to the characteristic morphology of Janus particles.


Nanotitania Textile Tensile strength Tear strength 



The authors acknowledge partial financial support from Department of Science and Technology, Government of India under various research grants.

Supplementary material

10570_2018_1698_MOESM1_ESM.docx (425 kb)
Supplementary material 1 (DOCX 424 kb)


  1. Abidi N, Cabrales L, Hequet E (2009) Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl Mater Interfaces 1:2141–2146CrossRefGoogle Scholar
  2. Beyers E et al (2009) Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles. Appl Catal B 88:515–524CrossRefGoogle Scholar
  3. Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A 174:156–164CrossRefGoogle Scholar
  4. Goyal N, Rastogi D, Jassal M, Agrawal AK (2013) Dispersion stabilization of titania nanoparticles for textile: aggregation behavior and self-cleaning activity. J Dispers Sci Technol 34:611–622CrossRefGoogle Scholar
  5. Green R, Zatsepin D, Hunt A, Kurmaev E, Gavrilov N, Moewes A (2013) The formation of Ti–O tetrahedra and band gap reduction in SiO2 via pulsed ion implantation. J Appl Phys 113:103704CrossRefGoogle Scholar
  6. Guo N et al (2014) Uniform TiO2–SiO2 hollow nanospheres: synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol. Appl Surf Sci 305:562–574CrossRefGoogle Scholar
  7. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657CrossRefGoogle Scholar
  8. Hanprasopwattana A, Srinivasan S, Sault A, Datye A (1996) Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM). Langmuir 12:3173–3179CrossRefGoogle Scholar
  9. Healy JJ Jr (1959) Spinnable textile fibers treated with colloidal silica. US2885308 AGoogle Scholar
  10. Hu JL, Qian HS, Li JJ, Hu Y, Li ZQ, Yu SH (2013) Synthesis of mesoporous SiO2@TiO2 core/shell nanospheres with enhanced photocatalytic properties. Part Part Syst Charact 30:306–310CrossRefGoogle Scholar
  11. Jafari-Kiyan A, Karimi L, Davodiroknabadi A (2017) Producing colored cotton fabrics with functional properties by combining silver nanoparticles with nano titanium dioxide. Cellulose 24:3083–3094CrossRefGoogle Scholar
  12. Jiang X, Tian X, Gu J, Huang D, Yang Y (2011) Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by in situ suspension polymerization. Appl Surf Sci 257:8451–8456CrossRefGoogle Scholar
  13. Karimi L, Yazdanshenas ME, Khajavi R, Rashidi A, Mirjalili M (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827CrossRefGoogle Scholar
  14. Lee J, Othman M, Eom Y, Lee T, Kim W, Kim J (2008) The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core–shell particles for photo-catalysis of methyl orange. Microporous Mesoporous Mater 116:561–568CrossRefGoogle Scholar
  15. Lim SH, Phonthammachai N, Pramana SS, White T (2008) Simple route to monodispersed silica–titania core–shell photocatalysts. Langmuir 24:6226–6231CrossRefGoogle Scholar
  16. Miller JM, Hutchison JE, Sweeney SF (2011) Functionalized nanoparticles and methods of forming and using same. US20110252580Google Scholar
  17. Nur H (2006) Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater Sci Eng B 133:49–54CrossRefGoogle Scholar
  18. Pabón E, Retuert J, Quijada R, Zárate A (2004) TiO2–SiO2 mixed oxides prepared by a combined sol–gel and polymer inclusion method. Microporous Mesoporous Mater 67:195–203CrossRefGoogle Scholar
  19. Panwar K, Jassal M, Agrawal AK (2015) In situ synthesis of Ag–SiO2 Janus particles with epoxy functionality for textile applications. Particuology 19:107–112CrossRefGoogle Scholar
  20. Panwar K, Jassal M, Agrawal AK (2016) TiO2–SiO2 Janus particles with highly enhanced photocatalytic activity. RSC Adv 6:92754–92764CrossRefGoogle Scholar
  21. Panwar K, Jassal M, Agrawal AK (2017a) Ag–SiO2 Janus particles based highly active SERS macroscopic substrates. Appl Surf Sci 411:368–373CrossRefGoogle Scholar
  22. Panwar K, Jassal M, Agrawal AK (2017b) TiO2–SiO2 Janus particles treated cotton fabric for thermal regulation. Surf Coat Technol 309:897–903CrossRefGoogle Scholar
  23. Patel B, Chaudhari S, Patel P (2014) Nano silica loaded cotton fabric; characterization and mechanical testing. Res J Eng Sci 2278:9472Google Scholar
  24. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24:6659–6667CrossRefGoogle Scholar
  25. Sakthivel S, Neppolian B, Shankar M, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82CrossRefGoogle Scholar
  26. Shen Z-Y, Li L-Y, Li Y, Wang C-C (2011) Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO2/TiO2 core/shell microspheres as high performance photocatalyst for dye degradation. J Colloid Interface Sci 354:196–201CrossRefGoogle Scholar
  27. Uddin M et al (2008) Cotton textile fibres coated by Au/TiO2 films: synthesis, characterization and self cleaning properties. J Photochem Photobiol A 199:64–72CrossRefGoogle Scholar
  28. Veronovski N, Sfiligoj-Smole M, Viota J (2010) Characterization of TiO2/TiO2–SiO2 coated cellulose textiles. Text Res J 80:55–62CrossRefGoogle Scholar
  29. Wang W-Y, Ku Y (2007) Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids Surf A 302:261–268CrossRefGoogle Scholar
  30. Wang R, Wang X, Xin JH (2009) Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Mater Interfaces 2:82–85CrossRefGoogle Scholar
  31. Wu D, Long M, Zhou J, Cai W, Zhu X, Chen C, Wu Y (2009) Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coat Technol 203:3728–3733CrossRefGoogle Scholar
  32. Yang H, Zhu S, Pan N (2004) Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym Sci 92:3201–3210CrossRefGoogle Scholar
  33. Yu M et al (2013) Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized. ACS Appl Mater Interfaces 5:3697–3703CrossRefGoogle Scholar
  34. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2006) Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Mol Catal A Chem 244:160–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.SMITA Research Lab, Department of Textile TechnologyIndian Institute of Technology DelhiHauz Khas, New DelhiIndia

Personalised recommendations