Skip to main content

Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents

Abstract

Cellulose derivatives are an attractive sustainable material used frequently in biomaterials, however their solubility in safe, green solvents is not widely exploited. In this work three cellulose derivatives; ethyl cellulose, cellulose acetate and carboxymethyl cellulose were subjected to electrohydrodynamic processing. All were processed with safe, environmentally friendly solvents; ethanol, acetone and water. Ethyl cellulose was electrospun and an interesting transitional region was identified. The morphological changes from particles with tails to thick fibres were charted from 17 to 25 wt% solutions. The concentration and solvent composition of cellulose acetate (CA) solutions were then changed; increasing the concentration also increased fibre size. At 10 wt% CA, with acetone only, fibres with heavy beading were produced. In an attempt to incorporate water in the binary solvent system to reduce the acetone content, 80:20 acetone/water solvent system was used. It was noted that for the same concentration of CA (10 wt%), the beading was reduced. Finally, carboxymethyl cellulose was electrospun with poly(ethylene oxide), with the molecular weight and polymer compositions changed and the morphology observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Article  CAS  Google Scholar 

  • Almeria B, Deng W, Fahmy TM, Gomez A (2010) Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci 343(1):125–133

    Article  CAS  Google Scholar 

  • Brako F, Raimi-Abraham B, Mahalingam S, Craig DQM, Edirisinghe M (2015) Making nanofibres of mucoadhesive polymer blends for vaginal therapies. Eur Polym J 70:186–196

    Article  CAS  Google Scholar 

  • Castilla-Casadiego DA, Maldonado M, Sundaram P, Almodovar J (2016) “Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Commun 6(04):402–407

    Article  CAS  Google Scholar 

  • Cui W, Zhou Y, Chang J (2016) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11(1):014108

    Article  Google Scholar 

  • Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  • Duarte AR, Gordillo MD, Cardoso MM, Simplicio AL, Duarte CM (2006) Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. Int J Pharm 311(1–2):50–54

    Article  CAS  Google Scholar 

  • Eltayeb M, Bakhshi PK, Stride E, Edirisinghe M (2013) Preparation of solid lipid nanoparticles containing active compound by electrohydrodynamic spraying. Food Res Int 53(1):88–95

    Article  CAS  Google Scholar 

  • Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1975504A, 1934

  • Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482

    Article  CAS  Google Scholar 

  • Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391

    Article  CAS  Google Scholar 

  • Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1):13403

    Article  Google Scholar 

  • Han T, Reneker DH, Yarin AL (2007) Buckling of jets in electrospinning. Polymer 48(20):6064–6076

    Article  CAS  Google Scholar 

  • Hayati I, Bailey A, Tadros TF (1987) Investigations into the mechanism of electrohydrodynamic spraying of liquids: II. Mechanism of stable jet formation and electrical forces acting on a liquid cone. J Colloid Interface Sci 117(1):222–230

    Article  CAS  Google Scholar 

  • Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13(8):2201

    Article  CAS  Google Scholar 

  • Husain O, Lau W, Edirisinghe M, Parhizkar M (2016) Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution. Mater Sci Eng C Mater Biol Appl 65:240–250

    Article  CAS  Google Scholar 

  • Jeun JP, Lim YM, Choi JH, La HS, Kang PH, Nho YC (2007) Preparation of ethyl-cellulose nanofibers via an electrospinning. Solid State Phenom 119:255–258

    Article  CAS  Google Scholar 

  • Kessick R, Tepper G (2003) Microscale electrospinning of polymer nanofiber interconnections. Appl Phys Lett 83(3):557

    Article  CAS  Google Scholar 

  • Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG (2003) The change of bead morphology formed on electrospun polystyrene fibers. Polymer 44(14):4029–4034

    Article  CAS  Google Scholar 

  • Li Z, Wang C (2013) Effects of working parameters on electrospinning. In: One-dimensional nanostructures: electrospinning technique and unique nanofibers. Springer, Berlin, Heidelberg, pp 15–28

    Google Scholar 

  • Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Liu X, Lin T, Gao Y, Xu Z, Huang C, Yao G, Jiang L, Tang Y, Wang X (2012) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res B Appl Biomater 100(6):1556–1565

    Article  Google Scholar 

  • Loffler H, Kampf G, Schmermund D, Maibach HI (2007) How irritant is alcohol? Br J Dermatol 157(1):74–81

    Article  CAS  Google Scholar 

  • Luo C, Edirisinghe M (2014) Core-liquid-induced transition from coaxial electrospray to electrospinning of low-viscosity poly (lactide-co-glycolide) sheath solution. Macromolecules 47(22):7930–7938

    Article  CAS  Google Scholar 

  • Luo C, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51(7):1654–1662

    Article  CAS  Google Scholar 

  • Luo CJ, Stride E, Edirisinghe M (2012) Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 45(11):4669–4680

    Article  CAS  Google Scholar 

  • Miyamoto T, Takahashi S-I, Ito H, Inagaki H (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133

    Article  CAS  Google Scholar 

  • Park J-Y, Kim J-I, Lee I-H (2015) Fabrication and characterization of antimicrobial ethyl cellulose nanofibers using electrospinning techniques. J Nanosci Nanotechnol 15(8):5672–5675

    Article  CAS  Google Scholar 

  • Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87(9):4531

    Article  CAS  Google Scholar 

  • Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(10):3372–3384

    Article  CAS  Google Scholar 

  • Shokri J, Adibki K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Van De Ven TGM (ed) Cellulose - medical, pharmaceutical and electronic applications. InTech, pp 47–66

  • Smallwood IM (1996) Handbook of organic solvent properties. Hodder Headline Group, London

    Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2003) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci Polym Phys 42:5–11

    Article  Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65(4):430–434

    Article  CAS  Google Scholar 

  • Taylor G (1964) Disintegration of water drops in an electric field. In: Proceedings of the Royal Society of London, The Royal Society, London

  • Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575

    Article  CAS  Google Scholar 

  • Yang Y, Jia Z, Liu J, Li Q, Hou L, Wang L, Guan Z (2008) Effect of electric field distribution uniformity on electrospinning. J Appl Phys 103(10):104307

    Article  Google Scholar 

  • Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710

    Article  CAS  Google Scholar 

  • Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polymer J 41(3):423–432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MCM wishes to thank University College London for part funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Edirisinghe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crabbe-Mann, M., Tsaoulidis, D., Parhizkar, M. et al. Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose 25, 1687–1703 (2018). https://doi.org/10.1007/s10570-018-1673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1673-y

Keywords

  • Cellulose derivatives
  • Green solvents
  • Electrohydrodynamic processing
  • Microstructures