Skip to main content
Log in

Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Autohydrolysis technology is widely used for extracting lignocellulose from wood chips. In this study, the flow through autohydrolysis of spruce wood chips was studied fundamentally. In addition to rising temperature to 185 °C and prolonging time of hydrolysis to 75 min, a flow rate of 2 L/min led to significant lignocellulose removal from wood chips. However, the lower temperature of 170 °C, 15 min and flow rate of 6 L/min led to lignocellulose with larger molecular weight in the hydrolysis liquor. Gel permeation chromatography analysis confirmed the existence of lignin–carbohydrate complexes (LCC) in the hydrolysis liquors. The compositions of lignin, hemicelluloses and LCC in hydrolysis liquors were related to autohydrolysis conditions. Nineteen percent of lignin moieties were in LCC form in the hydrolysis liquor produced under the conditions of liquid/solid (L/S) ratio of 10 (wt/wt), 180 °C and 15 min. Furthermore, the hydrolysis liquor produced under the conditions of L/S ratio of 5/1, 190 °C and 15 min contained 89% of lignin in LCC forms. Moreover, the efficiencies of membrane dialysis, acidification and ethanol extraction in extracting lignocellulose were different for different hydrolysis liquors implying that the properties of hydrolysis liquors (and thus the hydrolysis conditions) would significantly affect the performance of downstream processes for isolating lignocellulose from hydrolysis liquors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot-compressed water. Ind Eng Chem Res 39:3688–3693

    Article  CAS  Google Scholar 

  • Ayeni A, Adeeyo O, Oresegun O, Oladimeji T (2015) Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res 4(4):14–19

    Google Scholar 

  • Carvalheiro F, Duarte L, Girio F (2008) Hemicelluloses biorefineries: a review on biomass pretretments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Chandel A, Chandrasekjar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6(1):8–20

    CAS  Google Scholar 

  • Dashtban M, Qin W (2012) Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Fact 11(63):1–15

    Google Scholar 

  • Du X, Gellerstedt G, Li J (2013) Universal fractionation of lignin–carbohydrate complexes (LCC) from lignocellulosic biomass: an example using spruce wood. Plant J 74(2):328–338

    Article  CAS  Google Scholar 

  • Eriksson O, Goring DAI, Lindgren O (1980) Structural studies on the chemical bonds between lignin and carbohydrates in spruce wood. Wood Sci Technol 14:267–279

    Article  CAS  Google Scholar 

  • Fatehi P, Chen J (2016) Extraction of technical lignins from pulping spent liquors, challenges and opportunities. In: Fang Z, Smith RL Jr (eds) Production of biofuels and chemicals from lignin. Springer, Berlin, pp 33–54

    Google Scholar 

  • Fatehi P, Gao W, Sun Y, Dashtban M (2016) Acidification of prehydrolysis liquor and spent liquor of natural sulfite semichemical pulping process. Bioresour Technol 218:518–525

    Article  CAS  Google Scholar 

  • Fox SC, McDonald AG (2010) Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. BioResources 5(2):990–1009

    Google Scholar 

  • Galia A, Schiavo B, Antonetti C, Raspolli Galetti AM, Interrante L, Lessi M, Scildone O, Valenti MG (2015) Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. Biotechnol Biofuels 8(218):1–18

    Google Scholar 

  • Garcia J, Zamudio M, Perez A, Feria M, Gomide J, Coledette J, Lopez F (2011) Soda-AQ pulping of paulownia wood after hydrolysis treatment. BioResources 6(2):971–986

    CAS  Google Scholar 

  • Jansson M, Danielsson S, Saadatmand S, Edlund U, Albertsson AC (2014) Upgrading of wood pre-hydrolysis liquor for renewable barrier design: a techno-economic consideration. Cellulose 21(3):2045–2062

    Article  CAS  Google Scholar 

  • Kapu NS, Trajano HL (2014) Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuels Bioprod Biorefin 8:857–870

    Article  Google Scholar 

  • Kumar H, Christopher LP (2017) Recent trends and developments in dissolving pulp production and application. Cellulose 24(6):2347–2365

    Article  CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin–carbohydrate complexes present in wood and in chemical pulps. Biomacromolelules 6:3467–3473

    Article  CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2006) Characterisation of lignin–carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung 60:156–161

    CAS  Google Scholar 

  • Leppanen K, Spetz P, Pranovich A, Hartonen K, Kitunen V, Ilvesniemi H (2011) Pressurized hot water extraction of Norway spruce hemicelluloses using a flow-through system. Wood Sci Technol 45:223–236

    Article  CAS  Google Scholar 

  • Liu S (2008) A kinetic model on autocatalytic reactions in woody biomass hydrolysis. J Biobased Mater Bioenergy 2(2):135–147

    Article  Google Scholar 

  • Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416

    Article  CAS  Google Scholar 

  • Liu Z, Fatehi P, Jahan MS, Ni Y (2011a) Separation of lignocellulosic material by combined processes of pre-hydrolysis and ethanol extraction. Bioresour Technol 102:1264–1269

    Article  CAS  Google Scholar 

  • Liu Z, Fatehi P, Sadeghi S, Ni Y (2011b) Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresour Technol 102:9613–9618

    Article  CAS  Google Scholar 

  • Lora J, Glasser W (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(112):39–48

    Article  CAS  Google Scholar 

  • Oinonen P, Zhang L, Lawoko M, Henriksson G (2015) On the formation of lignin polysaccharide networks in Norway spruce. Phytochemistry 111:177–184

    Article  CAS  Google Scholar 

  • Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16(4):743–762

    Article  CAS  Google Scholar 

  • Pothiraj C, Kanmani P, Balaji P (2006) Bioconversion of lignocellulose materials. Microbiology 34(4):159–165

    CAS  Google Scholar 

  • Reid JD, Lynch DFJ (1937) Cellulose analysis. A comparison of three principal methods. Ind Eng Chem 9(12):570–573

    CAS  Google Scholar 

  • Saeed A, Sarwar Jahan M, Li H, Liu Z, Ni Y, van Heiningen A (2012) Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwood. Biomass Bioenergy 39:14–19

    Article  CAS  Google Scholar 

  • Santos Muguet MC, Ruuttunen K, Jaaskelainen AS, Colodette JL, Vuorinen T (2013) Defibration mechanisms of auto hydrolyzed Eucalyptus wood chips. Cellulose 20(5):2647–2654

    Article  Google Scholar 

  • Santucci B, Maziero P, Rabelo S, Curvelo A, Pimenta M (2015) Autohydrolysis of hemicelluloses from sugarcane bagasse during hydrothermal pretreatment: a kinetic assessment. Bioenergy Res 8(4):1778–1787

    Article  CAS  Google Scholar 

  • Sarip H, Hossain S, Azeni M, Allaf K (2016) A review of the thermal pretreatment of lignocellulosic biomass towards glucose production: autohydrolysis with DIC technology. BioResources 11(4):10625–10653

    Article  Google Scholar 

  • Shi H, Fatehi P, Xiao H, Ni Y (2011) A combined acidification/PEO flocculation process to improve the lignin removal from the pre-hydrolysis liquor of kraft-based dissolving pulp production process. Bioresour Technol 102(8):5177–5182

    Article  CAS  Google Scholar 

  • Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L (eds) Cellulose—medical, pharmaceutical and electronic applications. InTech, London, pp 47–66

    Google Scholar 

  • Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M, van Heiningen A, Froschauer C, Schottenberger H (2013) Novel concepts of dissolving pulp production. Cellulose 20(4):1547–1561

    Article  CAS  Google Scholar 

  • Sjostrom E (1993) Wood chemistry. Fundamentals and Applications, 2nd edn. Academic press, San Diego

    Google Scholar 

  • Song T, Pranovich A, Sumersky I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurized hot water. Holzforschung 62:659–666

    Article  CAS  Google Scholar 

  • Tarasov D, Leitch M, Fatehi P (2015) Production of lignosulfonate in NSSC-BASED BIOREfiNERY. Biotechnol Prog 31(6):1508–1514

    Article  CAS  Google Scholar 

  • Testova L, Vilonen KM, Pynnonen H, Tenkanen M, Sixta H (2009) Isolation of hemicelluloses from birch wood: distribution of wood components and preliminary trials in dehydration of hemicelluloses. Lenzing Berichte 87:58–65

    CAS  Google Scholar 

  • Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B (2014) Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm 473:64–72

    Article  CAS  Google Scholar 

  • Tolbert A, Akinosho H, Khunsupat R (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8:836–856

    Article  CAS  Google Scholar 

  • Tunc M (2014) Effect of liquid to solid ratio on autohydrolysis of Eucalyptus globulus wood meal. BioResources 9(2):3014–3024

    Article  CAS  Google Scholar 

  • Tunc M, Lawoko M, van Heiningen ARP (2010) Understanding the limitation of removal of hemicelluloses during autohydrolysis of a mixture of southern hardwoods. BioResources 5(1):356–371

    CAS  Google Scholar 

  • Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6(3):3547–3568

    Google Scholar 

  • Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Early Researcher Award program of the Government of Ontario for funding this research. Also, support from Canada Foundation for Innovation, Ontario Research Fund, Canada Research Chair and Northern Ontario Heritage Fund Corporation is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Fatehi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, D., Leitch, M. & Fatehi, P. Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation. Cellulose 25, 1377–1393 (2018). https://doi.org/10.1007/s10570-017-1643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1643-9

Keywords