Development of multifunctional cotton fabrics using difunctional polysiloxanes

Abstract

Cotton fabrics were modified with difunctional polysiloxanes to impart biocidal and hydrophobic properties. The modification was performed in two steps, using tetraethoxysilane in the first step, and then polysiloxanes having in their structure both alkoxy groups and long-chain quaternary ammonium salts in the second step. The modified fabrics were tested for the action of a mixture of five mold species that most often cause decomposition of cellulose. The hydrophobicity was determined by measuring the water contact angle. Moreover, samples were evaluated by SEM, FTIR Spectra and elemental analysis. Results showed that multifunctional fabrics were obtained with both biocidal and hydrophobic properties that are resistant to washing. All modified samples showed protection against mold growth on level 2 and a water contact angle up to 140°. The modification does not cause any apparent changes such as stiffening, color changes, or decrease in mechanical properties.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Böttcher H (2000) Bioactive so-gel coatings. Adv Synth Catal 342:427–436. https://doi.org/10.1002/1521-3897(200006)342:5%3C427::AID-PRAC427%3E3.0.CO;2-B

    Google Scholar 

  2. Böttcher H, Jagota C, Trepte J, Kallies KH, Haufe H (1999) Sol-gel composite films with controlled release of biocides. J Controll Release 60:57–65. https://doi.org/10.1016/S0168-3659(99)00053-X

    Article  Google Scholar 

  3. Brinker CJ, Scherer GW (1989) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  4. Cai X, Zhang JI, Ouyang Y, Ma D, Tan SZ, Peng YI (2013) Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicicity. Langmuir 29:5279–5285. https://doi.org/10.1021/la400824f

    CAS  Article  Google Scholar 

  5. Chen Z, Chisholm BJ, Stfslien S, He J, Patel S (2010) Novel, UV-curable coating containing a tethered biocide: synthesis, characterization, and antimicrobial activity. J Biomed Mater Res A 95A:486–494. https://doi.org/10.1002/jbm.a.32876

    CAS  Article  Google Scholar 

  6. Chen Y, Zhong X, Zhang Q (2012) Synthesis of CO2-philic polysiloxane with N-halamine side groups for biocidal coating on cotton. Ind Eng Chem Res 51:9260–9265. https://doi.org/10.1021/ie300378b

    CAS  Article  Google Scholar 

  7. Chen Y, Niu MQ, Yuan S, Teng HN (2013) Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption. Appl Surf Sci 264:171–175. https://doi.org/10.1016/j.apsusc.2012.09.165

    CAS  Article  Google Scholar 

  8. Chen Y, Zhang Q, Han Q, Mi Y, Sun S, Feng C, Xiao H, Yu P, Yang C (2017) Synthesis of polysiloxane with 5,5-dimethylhydantoin-based N-halamine pendants for biocidal functionalization of polyethylene by supercritical impregnation. J Appl Polym Sci 134:17. https://doi.org/10.1002/APP.44721

    Google Scholar 

  9. Cheng X, Li R, Du J, Sheng J, Ma K, Ren X, Huang TS (2015) Antimicrobial activity of hydrophobic cotton coated with N-halamine. Polym Adv Technol 26:99–103. https://doi.org/10.1002/pat.3426

    CAS  Article  Google Scholar 

  10. Foksowicz-Flaczyk J, Walentowska J, Przybylak M, Maciejewski H (2016) Multifunctional durable properties of textile materials modified by biocidal agents in the sol-gel process. Surf Coat Technol 304:160–166. https://doi.org/10.1016/j.surfcoat.2016.06.062

    CAS  Article  Google Scholar 

  11. Fouda MMG, Abdel-Halim ES, Al-Deyab SS (2013) Antibacterial modification of cotton using nanotechnology. Carbohydr Polym 92:943–954. https://doi.org/10.1016/j.carbpol.2012.09.074

    CAS  Article  Google Scholar 

  12. Gao DG, Chen C, Ma JZ, Lu B, Li JX (2013) Preparation, characterization and application of ZnO sol containing quaternary phosphonium salts. J Sol–Gel Sci Technol 65:336–343. https://doi.org/10.1007/s10971-012-2941-1

    CAS  Article  Google Scholar 

  13. Hou A, Shi Y (2009) Polymerization and surface active properties of water-soluble amphiphilic polysiloxane copolymers modified with quaternary ammonium salts and long-carbon chain groups. Mater Sci Eng B 163:99–104. https://doi.org/10.1016/j.mseb.2009.05.014

    CAS  Article  Google Scholar 

  14. Ibrahim NA, El-Zairy MR, Eid BM, El-Zairy EMR, Emam EM (2015) New finishing possibilities for producing durable multifunctional cotton/wool and viscose/wool blended fabrics. Carbohydr Polym 119:182–193. https://doi.org/10.1016/j.carbpol.2014.11.040

    CAS  Article  Google Scholar 

  15. Jiang ZM, Ma KK, Du JM, Li R, Ren XH, Huang TS (2014) Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose. Appl Surf Sci 288:518–523. https://doi.org/10.1016/j.apsusc.2013.10.063

    CAS  Article  Google Scholar 

  16. Kaur R, Liu S (2016) Antibacterial surface design—contact kill. Prog Surf Sci 91:136–153. https://doi.org/10.1016/j.progsurf.2016.09.001

    CAS  Article  Google Scholar 

  17. Lin Y, Liu Q, Cheng L, Lei Y, Zhang A (2014) Synthesis and antimicrobial activities of polysiloxanes-containing quaternary ammonium salts on bacteria and phytopathogenic fungi. React Funct Polym 85:36–44. https://doi.org/10.1016/j.reactfunctpolym.2014.10.002

    CAS  Article  Google Scholar 

  18. Liu Y, Ma KK, Li R, Ren XH, Huang TS (2013) Antibacterial cotton treated with N-halamine and quaternary ammonium salts. Cellulose 20:3123–3130. https://doi.org/10.1007/s10570-013-0056-7

    CAS  Article  Google Scholar 

  19. Mahbubul HM, Sunderland M (2015) Antimicrobial and insect-resist wool fabrics by coating with microencapsulated antimicrobial and insect-resist agents. Prog Org Coat 85:221–229. https://doi.org/10.1016/j.porgcoat.2015.04.016

    Article  Google Scholar 

  20. Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol–gel coatings. J Mater Chem 15:4385–4398. https://doi.org/10.1039/B505177K

    CAS  Article  Google Scholar 

  21. Mahltig B, Gutmann E, Reinbold M, Meyer DC, Böttcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol–Gel Sci Technol 51:204–214. https://doi.org/10.1007/s10971-009-1972-8

    CAS  Article  Google Scholar 

  22. Perliolatto M, Ferrero F, Monarsolo A, Mossoti R (2013) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364. https://doi.org/10.1007/s10570-012-9821-2

    Article  Google Scholar 

  23. Przybylak M, Maciejewski H, Dutkiewicz A (2016a) Preparation of highly hydrophobic cotton fabric by modification with bifunctional silsesquioxanes in the sol-gel process. Appl Surf Sci 387:163–174. https://doi.org/10.1016/j.apsusc.2016.06.094

    CAS  Article  Google Scholar 

  24. Przybylak M, Maciejewski H, Dutkiewicz A, Dąbek I, Nowicki M (2016b) Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose 23:2185–2197. https://doi.org/10.1007/s10570-016-0940-z

    CAS  Article  Google Scholar 

  25. Przybylak M, Maciejewski H, Dutkiewicz A, Wesołek D, Władyka-Przybylak M (2016c) Multifunctional, strongly hydrophobic and flame-retarded cotton fabrics modified with flame retardant agents and silicone compounds. Polym Degrad Stab 128:55–64. https://doi.org/10.1016/j.polymdegradstab.2016.03.003

    CAS  Article  Google Scholar 

  26. Qin X, Li Y, Zhou F, Ren L, Zhao Y, Yuan X (2015) Polydimethylsiloxane–polymethacrylate block copolymers tethering quaternary ammonium salts groups for antimicrobial coating. Appl Surf Sci 328:183–192. https://doi.org/10.1016/j.apsusc.2014.12.019

    CAS  Article  Google Scholar 

  27. Ren XH, Kou L, Kocer HB, Zhu CY, Worley SD, Broughton RM, Huang TS (2008a) Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A Physicochem Eng Asp 317:711–716. https://doi.org/10.1016/j.colsurfa.2007.12.007

    CAS  Article  Google Scholar 

  28. Ren XH, Kou L, Liang J, Worley SD, Tzou YM, Huang TS (2008b) Antimicrobial efficacy and light stability of N-halamine siloxane bound to cotton. Cellulose 15:593–598. https://doi.org/10.1007/s10570-008-9205-9

    CAS  Article  Google Scholar 

  29. Scholz J, Nocke G, Hollstein F, Weissbach A (2005) Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surf Coat Technol 192:252–256. https://doi.org/10.1016/j.surfcoat.2004.05.036

    CAS  Article  Google Scholar 

  30. Shin HK, Park M, Chung YS, Kim HY, Jin FL, Choi HS, Pork SJ (2013) Preparation and characterization of chlorinated cross-linked chitosan/cotton knit for biomedical applications. Macromol Res 21:1241–1246. https://doi.org/10.1007/s13233-013-1164-9

    CAS  Article  Google Scholar 

  31. Sun G (2016) Antimicrobial textiles. Woodhead Publishing, Cambridge

    Google Scholar 

  32. Textor T (2009) Surface modification of textile: modification of textile surfaces using the sol-gel technique. Woodhead Publishing, Cambridge

    Google Scholar 

  33. Textor T, Mahltig B (2010) A sol-gel based surface treatment for preparation of water repellent antistatic textiles. Appl Surf Sci 256:1668–1674. https://doi.org/10.1016/j.apsusc.2009.09.091

    CAS  Article  Google Scholar 

  34. Textor T, Fouda MMG, Mahltig B (2010) Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction. Appl Surf Sci 256:2337–2342. https://doi.org/10.1016/j.apsusc.2009.10.063

    CAS  Article  Google Scholar 

  35. Tomšič B, Simončič B, Orel B, Žerjav M, Schroers H, Simončič A, Samardžija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626. https://doi.org/10.1016/j.carbpol.2008.09.013

    Article  Google Scholar 

  36. Wang BI, Wang JI, Li DD, Ren KF, Ji J (2012) Chitosan/poly(vinyl pyrollidone) coatings improve the antibacterial properties of poly(ethylene terephthalate). Appl Surf Sci 258:7801–7808. https://doi.org/10.1016/j.apsusc.2012.03.181

    CAS  Article  Google Scholar 

  37. Wu L, Xu Y, Cai L, Zang X, Li Z (2014) Synthesis of a novel multi N-halamines siloxane precursor and its antimicrobial activity on cotton. Appl Surf Sci 314:832–840. https://doi.org/10.1016/j.apsusc.2014.06.190

    CAS  Article  Google Scholar 

  38. Xiao W, Xu JB, Liu XY, Hu QL, Huang JG (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485. https://doi.org/10.1039/C3TB20303D

    CAS  Article  Google Scholar 

  39. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A 41:806. https://doi.org/10.1016/j.compositesa.2010.03.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Centre for Research and Development (Poland). Project No. 180 480 “Novel organosilicon compounds for upgrading of natural fibers and textiles”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcin Przybylak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Przybylak, M., Maciejewski, H., Dudkiewicz, A. et al. Development of multifunctional cotton fabrics using difunctional polysiloxanes. Cellulose 25, 1483–1497 (2018). https://doi.org/10.1007/s10570-017-1621-2

Download citation

Keywords

  • Biocidal properties
  • Hydrophobicity
  • Polysiloxanes
  • Cotton