Skip to main content

Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process

Abstract

The influence of lignin content on nanocellulosic fibril morphology, charge, colloidal stability and immobilization has been systematically investigated employing a series of nanofibrillated cellulose (NFC) with varying residual lignin content and compared to those of NFC made from fully bleached pulp. The lignin-containing pulps were obtained from the fractionation of Eucalyptus globulus wood chips in gamma-valerolactone (GVL)/water under the same conditions, they differ by the intensity of washing for lignin removal. The reference pulp originated from another cook of eucalyptus wood chips, and was fully bleached with a short Elemental-Chlorine-Free (ECF) sequence. All the pulps have a comparable hemicellulose-to-cellulose ratio and CED viscosity. NFC suspensions of 1 wt% concentration were mechanically produced from fluidization. The results indicated that the fibrils morphology, thickness and corresponding flocculation within NFC suspensions was highly influenced by the presence of lignin unevenly distributed on the fibril surface and within the suspension as particles. The presence of lignin in NFC suspension had a large impact on the rheology and dewatering of the NFC. Samples with high lignin content had distinguishable viscoelastic properties due to the greater flocculation of thicker fibrils and lower gel-like characteristics, with better dewatering properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bonn D, Coussot P, Huynh HT, Bertrand F, Debrégeas G (2002) Rheology of soft glassy materials. Europhys Lett 59:786–792

    CAS  Article  Google Scholar 

  2. Buscall R (2010) Letter to the editor: wall slip in dispersion rheometry. J Rheol 54:1177–1183. https://doi.org/10.1122/1.3495981

    CAS  Article  Google Scholar 

  3. Chaari F, Racineux G, Poitou A, Chaouche M (2003) Rheological behavior of sewage sludge and strain-induced dewatering. Rheol Acta 42:273–279. https://doi.org/10.1007/s00397-002-0276-5

    CAS  Article  Google Scholar 

  4. Conley K (2014) Annual review of global pulp and paper statistics. RISI Inc, PPI

    Google Scholar 

  5. Dalpke B, Kerekes RJ (2005) The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions. J Pulp Paper Sci 31:39–43

    CAS  Google Scholar 

  6. Dentel SK, Abu-Orf MM, Walker CA (2000) Optimization of slurry flocculation and dewatering based on electrokinetic and rheological phenomena. Chem Eng J 80:65–72. https://doi.org/10.1016/S1383-5866(00)00078-2

    CAS  Article  Google Scholar 

  7. Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013a) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861. https://doi.org/10.1007/s10570-013-0076-3

    CAS  Article  Google Scholar 

  8. Dimic-Misic K, Puisto A, Paltakari J, Alava M, Maloney T (2013b) The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes. Cellulose 20:1853–1864. https://doi.org/10.1007/s10570-013-9964-9

    CAS  Article  Google Scholar 

  9. Dimic-Misic K, Nieminen K, Gane P, Maloney T, Sixta H, Paltakari J (2014a) Deriving a process viscosity for complex particulate nanofibrillar cellulose gel-containing suspensions. Appl Rheol 24:35616–35625. https://doi.org/10.3933/ApplRheol-24-35616

    Article  Google Scholar 

  10. Dimic-Misic K, Nieminen K, Sixta H, Paltakari J, Maloney T (2014b) Processing plate immobolization data of nanocellulose furnishes. J Appl Eng Sci 12:145–152. https://doi.org/10.5937/jaes12-5021

    Article  Google Scholar 

  11. Dimic-Misic K, Salo T, Paltakari J, Paltakari J (2014c) Comparing the rheological properties of novel nanofibrillar cellulose-formulated pigment coating colours with those using traditional thickener. Nord Pulp Pap Res J 29:253–270

    CAS  Article  Google Scholar 

  12. Fall A, Bertrand F, Ovarlez G, Bonn D (2009) Yield stress and shear banding in granular suspensions. Phys Rev Lett 103:178301

    Article  Google Scholar 

  13. Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodriguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. https://doi.org/10.1007/s10570-012-9788-z

    CAS  Article  Google Scholar 

  14. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. https://doi.org/10.1021/bm801065u

    CAS  Article  PubMed  Google Scholar 

  15. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    CAS  Article  PubMed  Google Scholar 

  16. Janardhnan S, Sain MM (2007) Isolation of cellulose microfibrils—an enzymatic approach. BioResources 1:176–188

    Google Scholar 

  17. Janson J (1970) Calculation of the polysaccharide composition of wood and pulp. Pap Puu 52:323–329

    CAS  Google Scholar 

  18. Johansson L, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    CAS  Article  Google Scholar 

  19. Johansson L, Tammelin T, Campbell JM, Setala H, Osterberg M (2011) Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter 7:10917–10924. https://doi.org/10.1039/C1SM06073B

    CAS  Article  Google Scholar 

  20. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819. https://doi.org/10.1007/s10570-012-9766-5

    CAS  Article  Google Scholar 

  21. Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    CAS  Article  Google Scholar 

  22. Koljonen K, Österberg M, Johansson L-, Stenius P (2003) Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids Surf Physicochem Eng Asp 228:143–158. https://doi.org/10.1016/S0927-7757(03)00305-4

    CAS  Article  Google Scholar 

  23. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433. https://doi.org/10.1007/s10570-007-9184-2

    CAS  Article  Google Scholar 

  24. Lê HQ, Ma Y, Borrega M, Sixta H (2016) Wood biorefinery based on gamma-valerolactone/water fractionation. Green Chem 18:5466–5476. https://doi.org/10.1039/C6GC01692H

    CAS  Article  Google Scholar 

  25. Lieth H (1975) Primary Production of the Major Vegetation Units of the World. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, Berlin Heidelberg, pp 203–215

    Chapter  Google Scholar 

  26. Martoia F, Perge C, Dumont PJJ, Orgeas L, Fardin MA, Manneville S, Belgacem MN (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755. https://doi.org/10.1039/C5SM00530B

    CAS  Article  PubMed  Google Scholar 

  27. Moan M, Aubry T, Bossard F (2003) Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J Rheol 47:1493–1504. https://doi.org/10.1122/1.1608952

    CAS  Article  Google Scholar 

  28. Mohtaschemi M, Sorvari A, Puisto A, Nuopponen M, Seppälä J, Alava MJ (2014) The vane method and kinetic modeling: shear rheology of nanofibrillated cellulose suspensions. Cellulose 21:3913–3925. https://doi.org/10.1007/s10570-014-0409-x

    Article  Google Scholar 

  29. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/C0CS00108B

    CAS  Article  PubMed  Google Scholar 

  30. Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159. https://doi.org/10.1122/1.4960336

    CAS  Article  Google Scholar 

  31. Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439. https://doi.org/10.1016/j.carbpol.2014.05.092

    CAS  Article  PubMed  Google Scholar 

  32. Nelson K, Retsina T, Iakovlev M, van Heiningen A, Deng Y, Shatkin JA, Mulyadi A (2016) American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications. In: Madsen LD, Svedberg EB (eds) Materials research for manufacturing: an industrial perspective of turning materials into new products. Springer International Publishing, Cham, pp 267–302

    Chapter  Google Scholar 

  33. Ni Y, Hu Q (1995) Alcell® lignin solubility in ethanol-water mixtures. J Appl Polym Sci 57:1441–1446. https://doi.org/10.1002/app.1995.070571203

    CAS  Article  Google Scholar 

  34. Orelma H, Filpponen I, Johansson L, Österberg M, Rojas OJ, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7:61. https://doi.org/10.1007/s13758-012-0061-7

    CAS  Article  PubMed  Google Scholar 

  35. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647. https://doi.org/10.1021/am401046x

    CAS  Article  PubMed  Google Scholar 

  36. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. https://doi.org/10.1021/bm061215p

    CAS  Article  PubMed  Google Scholar 

  37. Pääkkönen T, Dimic-Misic K, Orelma H, Pönni R, Vuorinen T, Maloney T (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23:277–293. https://doi.org/10.1007/s10570-015-0824-7

    CAS  Article  Google Scholar 

  38. Puisto A, Illa X, Mohtaschemi M, Alava MJ (2012) Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles. Eur Phys J E Soft Matter Biol Phys 35:6. https://doi.org/10.1140/epje/i2012-12006-1

    CAS  Article  Google Scholar 

  39. Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/C4GC02398F

    CAS  Article  Google Scholar 

  40. Rudraraju VS, Wyandt CM (2005) Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I. Int J Pharm 292:53–61. https://doi.org/10.1016/j.ijpharm.2004.10.011

    CAS  Article  PubMed  Google Scholar 

  41. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. https://doi.org/10.1021/bm0497769

    CAS  Article  PubMed  Google Scholar 

  42. Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. https://doi.org/10.1021/bm060154s

    CAS  Article  PubMed  Google Scholar 

  43. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    CAS  Article  Google Scholar 

  44. Sandas SE, Salminen PJ, Eklund DE (1989) Measuring the water retention of coating colors. Tappi J 17:207–210

    Google Scholar 

  45. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. https://doi.org/10.1021/bm2017542

    CAS  Article  PubMed  Google Scholar 

  46. Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press, San Diego

    Google Scholar 

  47. Strlič M, Kolar J, Žigon M, Pihlar B (1998) Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. J Chromatogr A 805:93–99. https://doi.org/10.1016/S0021-9673(98)00008-9

    Article  Google Scholar 

  48. Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21:1581–1589. https://doi.org/10.1007/s10570-014-0196-4

    CAS  Article  Google Scholar 

  49. Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564

    Article  Google Scholar 

  50. Yang MC, Scriven LE, MAcosko CW (1986) Some rheological measurements on magnetic iron oxide suspensions in silicone oil. J Rheol 30:1015–1029. https://doi.org/10.1122/1.549892

    CAS  Article  Google Scholar 

  51. Young R (2014) World dissolving pulp monitor. RISI Inc, PPI

    Google Scholar 

Download references

Acknowledgments

Funding from Aalto University, School of Chemical Technology and Finnish Bioeconomy Cluster Oy (FIBIC) via the Advanced Cellulose to Novel Products (ACel) research program is gratefully acknowledged. This work made use of Aalto University Bioeconomy Facilities. The authors would like to thank Ms. Ritva Kivelä for her support with the NFC suspensions production, Dr. Kaarlo Nieminen for his support with the mathematical solutions, Ms. Rita Hataka for her support with the chromatographic analyses, Dr. Juan José Valle-Delgado for his advices on AFM image analysis, Dr. Krista Vajanto for her support on SEM images acquisition, Dr. Michael Hummel, Dr. Marc Borrega and Prof. Eero Kontturi for their advices on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Herbert Sixta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lê, H.Q., Dimic-Misic, K., Johansson, LS. et al. Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process. Cellulose 25, 179–194 (2018). https://doi.org/10.1007/s10570-017-1602-5

Download citation

Keywords

  • Nanocellulose
  • Lignin
  • Dissolving pulp
  • Rheology
  • Gamma-valerolactone