Skip to main content
Log in

Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Carboxymethyl cellulose (CMC) has been broadly used in various fields ranging from pharmacy to lithium batteries because of its excellent properties such as the environmental friendliness, the good solubility, its low cost and biocompatibility. Herein, we present a direct electrodeposition method for carboxymethyl cellulose based on the coordination deposition. Using this method we can conveniently build smooth and homogeneous CMC films on the surface of copper and silver electrodes (or substrates). On the other hand, the deposited CMC film has sufficient strength to be completely detached from the electrodes (or substrates), which enables a novel and controllable method to prepare CMC films that can be used as independent film materials. In particular, the deposited CMC film shows favorable antibacterial activities, which are promising for applications in bioactive antibacterial coatings on metal substrates. More interestingly, the CMC electrodeposition provides the possibility to directly build sensors and detectors for electrochemical detection. Therefore, the CMC electrodeposition developed in this study can be potentially applied in surface coatings, functional films, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bourlinos AB, Petridis D (2002) Shape fabrication of millimeter-sized metal-containing carboxymethyl cellulose hollow capsules. Chem Commun (23):2788–2789

  • Bressner JE, Marelli B, Qin GK, Klinker LE, Zhang YJ, Kaplan DL, Omenetto FG (2014) Rapid fabrication of silk films with controlled architectures via electrogelation. J Mater Chem B 2:4983–4987

    Article  CAS  Google Scholar 

  • Cai T, Yang Z, Li HJ, Yang H, Li AM, Cheng RS (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614

    Article  CAS  Google Scholar 

  • Cai YW, Yuan F, Wang XM, Sun Z, Chen Y, Liu ZY, Wang XK, Yang ST, Wang S (2017) Synthesis of core-shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III). Cellulose 24:175–190

    Article  CAS  Google Scholar 

  • Cao XQ, Wang KY, Du G, Asiri AM, Ma YJ, Lu Q, Sun XP (2016) One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. J Mater Chem B 4:7540–7544

    Article  CAS  Google Scholar 

  • Cheng HJ, Qian Q, Wang X, Yu P, Mao LQ (2012) Electricity generation from carboxymethyl cellulose biomass: a new application of enzymatic biofuel cells. Electrochim Acta 82:203–207

    Article  CAS  Google Scholar 

  • Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloid Surface A 328:73–78

    Article  CAS  Google Scholar 

  • Fernandes R, Wu LQ, Chen TH, Yi HM, Rubloff GW, Ghodssi R, Bentley WE, Payne GF (2003) Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19:4058–4062

    Article  CAS  Google Scholar 

  • Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pane S (2013) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2:1037–1044

    Article  CAS  Google Scholar 

  • Geng ZH, Wang X, Guo XC, Zhang Z, Chen YJ, Wang YF (2016) Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J Mater Chem B 4:3331–3338

    Article  CAS  Google Scholar 

  • Gu TT, Hasebe Y (2006) DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosens Bioelectron 21:2121–2128

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajarvi T, Liimatainen H, Niinimaa J, Sillanpaa M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  • Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. Acs Appl Mater Inter 9:15307–15316

    Article  CAS  Google Scholar 

  • Jeong D, Kim HK, Jeong JP, Dindulkar SD, Cho E, Yang YH, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellulose 23:2609–2625

    Article  CAS  Google Scholar 

  • Kim E, Xiong Y, Cheng Y, Wu HC, Liu Y, Morrow BH, Ghodssi R, Rubloff GW, Shen JN (2015) Chitosan to connect biology to electronics: fabricating the bio-device interface and communicating across this interface. Polymers 7:1–46

    Article  Google Scholar 

  • Klinkajon W, Supaphol P (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 9:045008

    Article  Google Scholar 

  • Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J, Kim SW (2013) Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzyme electrode. Biosens Bioelectron 42:342–348

    Article  Google Scholar 

  • Li S, Ge ZH, Zhang BP, Yao Y, Wang HC, Yang J, Li Y, Gao C, Lin YH (2016) Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Appl Surf Sci 384:272–278

    Article  CAS  Google Scholar 

  • Li C, Zhang TT, Zhao JY, Liu H, Zheng B, Gu Y, Yan XY, Li YR, Lu NN, Zhang ZQ (2017) Boosted sensor performance by surface modification of bifunctional rht-type metal–organic framework with nanosized electrochemically reduced graphene oxide. ACS Appl Mater Inter 9:2984–2994

    Article  CAS  Google Scholar 

  • Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF (2010) Biofabrication to build the biology-device interface. Biofabrication 2:022002

    Article  Google Scholar 

  • Liu JY, Wang XH, Wang TS, Li D, Xi FN, Wang J, Wang EK (2014) Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor. ACS Appl Mater Inter 6:19997–20002

    Article  CAS  Google Scholar 

  • Liu Y, Tsao CY, Kim E, Tschirhart T, Terrell JL, Bentley WE, Payne GF (2017) Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication. Adv Healthc Mater 6:1600908

    Article  Google Scholar 

  • Ludwig J, An L, Pattengale B, Kong QY, Zhang XY, Xi PX, Huang JE (2015) Ultrafast hole trapping and relaxation dynamics in p-type CuS nanodisks. J Phys Chem Lett 6:2671–2675

    Article  CAS  Google Scholar 

  • Ma R, Epand RF, Zhitomirsky I (2010) Electrodeposition of hyaluronic acid and hyaluronic acid–bovine serum albumin films from aqueous solutions. Colloid Surface B 77:279–285

    Article  CAS  Google Scholar 

  • Ma HH, Sun JZ, Zhang Y, Bian C, Xia SH, Zhen T (2016) Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B-1 in maize. Biosens Bioelectron 80:222–229

    Article  CAS  Google Scholar 

  • Marquez A, Jimenez-Jorquera C, Dominguez C, Munoz-Berbel X (2017) Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosens Bioelectron 97:136–142

    Article  CAS  Google Scholar 

  • Meng W, Xu S, Dai L, Li YH, Zhu J, Wang L (2017) An enhanced sensitivity towards H2O2 reduction based on a novel Cu metal–organic framework and acetylene black modified electrode. Electrochim Acta 230:324–332

    Article  CAS  Google Scholar 

  • Meulendijks N, Burghoorn M, van Ee R, Mourad M, Mann D, Keul H, Bex G, van Veldhoven E, Verheijen M, Buskens PBA (2017) Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24:2191–2204

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8:2762–2767

    Article  CAS  Google Scholar 

  • Peng XH, Liu Y, Bentley WE, Payne GF (2016) Electrochemical fabrication of functional gelatin-based bioelectronic interface. Biomacromol 17:558–563

    Article  CAS  Google Scholar 

  • Pishbin F, Mourino V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479

    Article  CAS  Google Scholar 

  • Qiu L, Shao ZQ, Wang DX, Wang FJ, Wang WJ, Wang JQ (2014) Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose 21:2789–2796

    Article  CAS  Google Scholar 

  • Roy A, Ernsting MJ, Undzys E, Li SD (2015) A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials 52:335–346

    Article  CAS  Google Scholar 

  • Ruan CQ, Stromme M, Lindh J (2016) A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 23:2627–2638

    Article  CAS  Google Scholar 

  • Seuss S, Boccaccini AR (2013) Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromol 14:3355–3369

    Article  CAS  Google Scholar 

  • Shahbazi M, Ahmadi SJ, Seif A, Rajabzadeh G (2016) Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocolloid 61:378–389

    Article  CAS  Google Scholar 

  • Shi XW, Tsao CY, Yang XH, Liu Y, Dykstra P, Rubloff GW, Ghodssi R, Bentley WE, Payne GF (2009) Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv Funct Mater 19:2074–2080

    Article  CAS  Google Scholar 

  • Shi XW, Qiu L, Nie Z, Xiao L, Payne GF, Du YM (2013) Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’ chemistry. Biofabrication 5:041001

    Article  Google Scholar 

  • Wang YF, Liu Y, Cheng Y, Kim E, Rubloff GW, Bentley WE, Payne GF (2011) Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels. Adv Mater 23:5817–5821

    Article  CAS  Google Scholar 

  • Wang BB, Ji XP, Zhao HY, Wang N, Li XR, Ni RX, Liu YH (2014a) An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Biosens Bioelectron 55:113–119

    Article  CAS  Google Scholar 

  • Wang YF, Geng ZH, Guo MM, Chen YJ, Guo XC, Wang X (2014b) Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS Appl Mater Inter 6:15510–15515

    Article  CAS  Google Scholar 

  • Wang C, Qian XR, An XH (2015a) In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22:3789–3797

    Article  CAS  Google Scholar 

  • Wang YF, Guo XC, Pan RH, Han D, Chen T, Geng ZH, Xiong YF, Chen YJ (2015b) Electrodeposition of chitosan/gelatin/nanosilver: a new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Mater Sci Eng, C 53:222–228

    Article  CAS  Google Scholar 

  • Wang ZH, Liu HP, Wang SY, Rao ZL, Yang YY (2015c) A luminescent Terbium-Succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment. Sens Actuators B Chem 220:779–787

    Article  CAS  Google Scholar 

  • Weng LH, Rostamzadeh P, Nooryshokry N, Le HC, Golzarian J (2013) In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 9:6823–6833

    Article  CAS  Google Scholar 

  • Zeng XD, Liu XY, Kong B, Wang Y, Wei WZ (2008) A sensitive nonenzymatic hydrogen peroxide sensor based on DNA-Cu2+ complex electrodeposition onto glassy carbon electrode. Sensor Actuators B Chem 133:381–386

    Article  CAS  Google Scholar 

  • Zhang MR, Chen XQ, Pan GB (2017) Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection. Sens Actuators B Chem 240:142–147

    Article  CAS  Google Scholar 

  • Zhao PK, Liu HY, Deng HB, Xiao L, Qin CQ, Du YM, Shi XW (2014) A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloid Surf B 123:657–663

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (WUT: 2017-zy-007; WUT: 2017-CL-B1-12) and the Students Innovation and Entrepreneurship Training Program (20171049701010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Z., Wang, M. et al. Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method. Cellulose 25, 105–115 (2018). https://doi.org/10.1007/s10570-017-1580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1580-7

Keywords

Navigation